亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Engineering strategies for two-dimensional perovskite solar cells

钙钛矿(结构) 材料科学 稳健性(进化) 串联 纳米技术 光电子学 化学工程 化学 复合材料 工程类 生物化学 基因
作者
Weiguang Chi,Sanjoy Banerjee
出处
期刊:Trends in chemistry [Elsevier]
卷期号:4 (11): 1005-1020 被引量:11
标识
DOI:10.1016/j.trechm.2022.08.009
摘要

Two-dimensional perovskites can be used to improve the robustness of an absorber or provide protection for vulnerable 3D counterparts due to their multiple-quantum-well structure, high hydrophobicity, and superior thermal and light stability, thereby providing an effective pathway to the enhancement of device stability. Tuning the composition of 2D perovskites induces change of the lattice structure and optoelectronic properties, substantially affecting the device stability and allowing the development of lead-free perovskite solar cells (PSCs). Achieving simultaneously high efficiency and high stability of PSCs with 2D perovskites requires the application of appropriate engineering strategies, such as dimensional, interfacial, and tandem cell engineering, profiting from the strengths of both 2D and 3D materials. Perovskite solar cells (PSCs) face the challenge of degradation due to the vulnerability of perovskites to environmental factors. Two-dimensional (2D) perovskite materials allow the enhancement of absorber robustness or provide protection for vulnerable 3D counterparts, leading to improved stability of PSCs. However, the improved stability comes at the expense of efficiency; additional engineering strategies are needed to achieve simultaneously high efficiency and stability. Herein, we summarize the crystal structure and characteristics of different 2D perovskite materials and the performance of the PSCs with each type. In addition, the contributions of 2D perovskites to the improvement of device stability and efficiency are systematically analyzed from the point of view of compositional, dimensional, interfacial, and tandem cell engineering. Perovskite solar cells (PSCs) face the challenge of degradation due to the vulnerability of perovskites to environmental factors. Two-dimensional (2D) perovskite materials allow the enhancement of absorber robustness or provide protection for vulnerable 3D counterparts, leading to improved stability of PSCs. However, the improved stability comes at the expense of efficiency; additional engineering strategies are needed to achieve simultaneously high efficiency and stability. Herein, we summarize the crystal structure and characteristics of different 2D perovskite materials and the performance of the PSCs with each type. In addition, the contributions of 2D perovskites to the improvement of device stability and efficiency are systematically analyzed from the point of view of compositional, dimensional, interfacial, and tandem cell engineering. the formula of a 2D ACI perovskite is BAnMnX3n+1 (B, divalent organic cation; A, univalent organic cation; M, metal; X, halide; n = 1, 2, …, ∞) and an alternating cation arrangement is constructed by the larger B and smaller A cations in the interlayer space. the change of dielectric properties of a whole system due to the incorporation of nanoparticles and/or 2D materials and the resulting modification of interface and inner magnetic field. a perovskite with formula BAn−1MnX3n+1 (n = 1, 2, …, ∞). a bound electron–hole pair in a semiconducting or insulating material. the perovskite conductor layers with high conductivity function as the potential 'well' (the preferred location for charge transport) and the insulating spacer cations foster the formation of the potential 'wall'. the number of inorganic layers that can be tuned by the stoichiometry of precursor. the degeneracy of the carrier spin states within the conduction and/or valence bands as a consequence of spin–orbit interaction between the spin and the momentum of electrons under broken inversion symmetry. combination of an excited electron and hole after charge separation. represented by a formula of A′2An-1MnX3n+1 (A and A′, univalent organic cations; n = 1, 2, …, ∞), consisting of conductor layer, (An-1MnX3n+1) and isolation layer (A′, e.g., organic aliphatic or aromatic alkylammonium cation). the splitting of orbital energy level caused by the interaction between particle spin and orbital momentum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾天祥完成签到,获得积分10
5秒前
40秒前
骆瓷发布了新的文献求助10
47秒前
落寞奎发布了新的文献求助10
50秒前
57秒前
倪晨发布了新的文献求助30
1分钟前
1分钟前
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
倪晨完成签到,获得积分20
1分钟前
1分钟前
bzg发布了新的文献求助10
1分钟前
Yoanna_UTHSC应助GeoEye采纳,获得10
1分钟前
科研通AI2S应助bzg采纳,获得10
1分钟前
落寞奎完成签到,获得积分20
1分钟前
1分钟前
科目三应助落寞奎采纳,获得10
1分钟前
学医自救发布了新的文献求助10
1分钟前
学医自救完成签到,获得积分10
1分钟前
纯洁完成签到,获得积分10
2分钟前
Y先生完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
郑郑郑幸运完成签到 ,获得积分10
2分钟前
消逝发布了新的文献求助10
2分钟前
小鲨鱼完成签到,获得积分10
2分钟前
ALex发布了新的文献求助10
2分钟前
chuhong完成签到 ,获得积分10
2分钟前
ALex完成签到,获得积分10
2分钟前
3分钟前
3分钟前
情怀应助受伤雁荷采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
supermaltose发布了新的文献求助10
3分钟前
3分钟前
supermaltose完成签到,获得积分10
3分钟前
4分钟前
4分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335258
求助须知:如何正确求助?哪些是违规求助? 2964488
关于积分的说明 8613962
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447329
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658954