Towards An Efficient Searching Approach of ROS Message by Knowledge Graph

计算机科学 构造(python库) 消息传递 图形 机器人 组分(热力学) 计算机网络 分布式计算 人工智能 理论计算机科学 热力学 物理
作者
Sun Bo,Xinjun Mao,Shuo Yang,Long Chen
标识
DOI:10.1109/compsac54236.2022.00145
摘要

The Robot Operating System (ROS) has become the most popular robot development framework in the last few years, which has loosely coupled structure and provides remote communications between different component nodes. The ROS messages are critical to bridge the communication channels and clearly define the data structures. The developers can use the standardized or user-customized ROS message types to construct a communication channel between two component nodes uniquely. However, it becomes increasingly difficult for developers to find the required ROS message type from thousands of diverse ROS message types in ROS-based robotic software development. Finding the proper ROS message type is a non-trivial task because developers may hardly know the exact names of required ROS messages but only has a rough knowledge of the task domain features. To tackle this challenge, we construct a novel ROS Message Knowledge Graph (RMKG) with 4543 entities and 14320 relationships, including all ROS message types and message packages. We take the shortest path algorithm to search ROS message in RMKG by searching with ROS message feature or ROS message package and visualize the subgraph structure of the search results. Moreover, we develop a ROS message package library that supports fuzzy queries to find the required message package. A comprehensive evaluation of RMKG shows the high accuracy of our knowledge construction approach. A user study indicates that RMKG is promising in helping developers find suitable ROS message types for robotics software development tasks. An effect evaluation of message package fuzzy query shows the good effects of our fuzzy query method under different situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马静雨关注了科研通微信公众号
刚刚
111222完成签到,获得积分20
刚刚
1秒前
1秒前
三卡车安排你完成签到,获得积分10
2秒前
请叫我风吹麦浪应助Seiswan采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
曾经以亦完成签到,获得积分10
4秒前
所所应助发疯的游子采纳,获得10
4秒前
5秒前
jcm发布了新的文献求助10
6秒前
辛勤的初晴完成签到,获得积分20
6秒前
Scidog发布了新的文献求助10
6秒前
单于静柏完成签到,获得积分10
7秒前
校长发布了新的文献求助10
7秒前
8秒前
御觞丶完成签到,获得积分10
8秒前
今后应助zhui采纳,获得10
9秒前
9秒前
SciGPT应助雾蓝采纳,获得10
9秒前
lulu828完成签到,获得积分10
10秒前
10秒前
科研闲人完成签到,获得积分10
11秒前
内向秋寒发布了新的文献求助10
11秒前
11秒前
黑色兔子完成签到 ,获得积分10
11秒前
12秒前
四小时充足睡眠完成签到,获得积分10
13秒前
zhang0403完成签到,获得积分10
13秒前
欢喜的毛豆完成签到 ,获得积分10
14秒前
华仔应助Eddy采纳,获得10
14秒前
小王发布了新的文献求助10
14秒前
通~发布了新的文献求助10
15秒前
MES发布了新的文献求助10
15秒前
赘婿应助jennifercui采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794