生物网络
系统生物学
数据科学
复杂网络
网络科学
药物发现
生物学数据
计算机科学
计算生物学
人工智能
生物
生物信息学
万维网
作者
Chuang Liu,Yifang Ma,Jing Zhao,Ruth Nussinov,Yicheng Zhang,Feixiong Cheng,Zi-Ke Zhang
标识
DOI:10.1016/j.physrep.2019.12.004
摘要
Biological entities are involved in intricate and complex interactions, in which uncovering the biological information from the network concepts are of great significance. Benefiting from the advances of network science and high-throughput biomedical technologies, studying the biological systems from network biology has attracted much attention in recent years, and networks have long been central to our understanding of biological systems, in the form of linkage maps among genotypes, phenotypes, and the corresponding environmental factors. In this review, we summarize the recent developments of computational network biology, first introducing various types of biological networks and network structural properties. We then review the network-based approaches, ranging from some network metrics to the complicated machine-learning methods, and emphasize how to use these algorithms to gain new biological insights. Furthermore, we highlight the application in neuroscience, human disease, and drug developments from the perspectives of network science, and we discuss some major challenges and future directions. We hope that this review will draw increasing interdisciplinary attention from physicists, computer scientists, and biologists.
科研通智能强力驱动
Strongly Powered by AbleSci AI