Deep learning in pore scale imaging and modeling

深度学习 计算机科学 人工智能 工作流程 卷积神经网络 人工神经网络 比例(比率) 机器学习 物理 量子力学 数据库
作者
Ying Da Wang,Martin J. Blunt,Ryan T. Armstrong,Peyman Mostaghimi
出处
期刊:Earth-Science Reviews [Elsevier BV]
卷期号:215: 103555-103555 被引量:180
标识
DOI:10.1016/j.earscirev.2021.103555
摘要

Pore-scale imaging and modeling has advanced greatly through the integration of Deep Learning into the workflow, from image processing to simulating physical processes. In Digital Core Analysis, a common tool in Earth Sciences, imaging the nano- and micro-scale structure of the pore space of rocks can be enhanced past hardware limitations, while identification of minerals and phases can be automated, with reduced bias and high physical accuracy. Traditional numerical methods for estimating petrophysical parameters and simulating flow and transport can be accelerated or replaced by neural networks. Techniques and common neural network architectures used in Digital Core Analysis are described with a review of recent studies to illustrate the wide range of tasks that benefit from Deep Learning. Focus is placed on the use of Convolutional Neural Networks (CNNs) for segmentation in pore-scale imaging, the use of CNNs and Generative Adversarial Networks (GANs) in image quality enhancement and generation, and the use of Artificial Neural Networks (ANNs) and CNNs for pore-scale physics modeling. Current limitations and challenges are discussed, including advances in network implementations, applications to unconventional resources, dataset acquisition and synthetic training, extrapolative potential, accuracy loss from soft computing, and the computational cost of 3D Deep Learning. Future directions of research are also discussed, focusing on the standardization of datasets and performance metrics, integrated workflow solutions, and further studies in multiphase flow predictions, such as CO2 trapping. The use of Deep Learning at the pore-scale will likely continue becoming increasingly pervasive, as potential exists to improve all aspects of the data-driven workflow, with higher image quality, automated processing, and faster simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黄启烽发布了新的文献求助10
1秒前
过冷风完成签到,获得积分10
2秒前
一点完成签到,获得积分10
2秒前
kong完成签到,获得积分10
3秒前
齐朕完成签到,获得积分10
3秒前
Why顺利完成签到 ,获得积分10
5秒前
yulou2199应助liumangtu采纳,获得10
5秒前
5秒前
李柯莹发布了新的文献求助30
6秒前
无花果应助柔弱的兔子采纳,获得10
6秒前
明芷蝶完成签到,获得积分10
6秒前
松松的小起猫完成签到,获得积分10
6秒前
呆萌幼晴完成签到,获得积分10
7秒前
Dellamoffy完成签到,获得积分10
7秒前
Pursuit完成签到,获得积分10
8秒前
XZZ完成签到 ,获得积分10
9秒前
叽里咕噜完成签到,获得积分10
9秒前
leclerc完成签到,获得积分10
9秒前
l玖完成签到 ,获得积分0
11秒前
plumcute完成签到,获得积分10
11秒前
YYT完成签到,获得积分10
12秒前
ludong_0应助松松的小起猫采纳,获得10
12秒前
www完成签到,获得积分10
12秒前
12秒前
等待的花卷完成签到 ,获得积分10
12秒前
顾海东关注了科研通微信公众号
12秒前
rorolinlin完成签到,获得积分10
13秒前
13秒前
H与K完成签到,获得积分10
13秒前
arsenal完成签到 ,获得积分10
13秒前
冰雪仙姿完成签到,获得积分10
14秒前
着急的傲菡完成签到,获得积分10
14秒前
沈飞飞完成签到,获得积分10
14秒前
15秒前
Haley完成签到,获得积分10
15秒前
熄熄完成签到 ,获得积分10
15秒前
小二郎应助Tony12采纳,获得10
15秒前
努恩完成签到,获得积分10
16秒前
积极一德完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478