Deep learning in pore scale imaging and modeling

深度学习 计算机科学 人工智能 工作流程 卷积神经网络 人工神经网络 比例(比率) 机器学习 量子力学 数据库 物理
作者
Ying Da Wang,Martin J. Blunt,Ryan T. Armstrong,Peyman Mostaghimi
出处
期刊:Earth-Science Reviews [Elsevier]
卷期号:215: 103555-103555 被引量:180
标识
DOI:10.1016/j.earscirev.2021.103555
摘要

Pore-scale imaging and modeling has advanced greatly through the integration of Deep Learning into the workflow, from image processing to simulating physical processes. In Digital Core Analysis, a common tool in Earth Sciences, imaging the nano- and micro-scale structure of the pore space of rocks can be enhanced past hardware limitations, while identification of minerals and phases can be automated, with reduced bias and high physical accuracy. Traditional numerical methods for estimating petrophysical parameters and simulating flow and transport can be accelerated or replaced by neural networks. Techniques and common neural network architectures used in Digital Core Analysis are described with a review of recent studies to illustrate the wide range of tasks that benefit from Deep Learning. Focus is placed on the use of Convolutional Neural Networks (CNNs) for segmentation in pore-scale imaging, the use of CNNs and Generative Adversarial Networks (GANs) in image quality enhancement and generation, and the use of Artificial Neural Networks (ANNs) and CNNs for pore-scale physics modeling. Current limitations and challenges are discussed, including advances in network implementations, applications to unconventional resources, dataset acquisition and synthetic training, extrapolative potential, accuracy loss from soft computing, and the computational cost of 3D Deep Learning. Future directions of research are also discussed, focusing on the standardization of datasets and performance metrics, integrated workflow solutions, and further studies in multiphase flow predictions, such as CO2 trapping. The use of Deep Learning at the pore-scale will likely continue becoming increasingly pervasive, as potential exists to improve all aspects of the data-driven workflow, with higher image quality, automated processing, and faster simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老孟发布了新的文献求助50
刚刚
luojimao完成签到,获得积分10
刚刚
1秒前
思的暖阳发布了新的文献求助80
1秒前
1秒前
2秒前
清爽映之完成签到,获得积分10
2秒前
山橘月完成签到,获得积分10
3秒前
所所应助科研通管家采纳,获得10
3秒前
daoyi应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得30
3秒前
李健的小迷弟应助YixiaoWang采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
ick558完成签到,获得积分10
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
汉堡包应助清爽盛男采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
MchemG应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
彭于晏应助科视采纳,获得10
5秒前
WLWLW发布了新的文献求助10
5秒前
眼圆广志发布了新的文献求助10
6秒前
8秒前
louis发布了新的文献求助10
8秒前
8秒前
颖火虫2588完成签到,获得积分10
8秒前
9秒前
9秒前
凹凸曼发布了新的文献求助20
10秒前
来日可追发布了新的文献求助30
10秒前
汉堡包应助xww采纳,获得10
11秒前
11秒前
11秒前
wanci应助朱小小采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 530
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3579379
求助须知:如何正确求助?哪些是违规求助? 3149298
关于积分的说明 9476617
捐赠科研通 2850574
什么是DOI,文献DOI怎么找? 1567258
邀请新用户注册赠送积分活动 734016
科研通“疑难数据库(出版商)”最低求助积分说明 720346