How Do Climate and Catchment Attributes Influence Flood Generating Processes? A Large‐Sample Study for 671 Catchments Across the Contiguous USA

大洪水 水文气象 环境科学 融雪 气候变化 降水 百年一遇洪水 流域 水文学(农业) 洪水预报 暴发洪水 气候学 气象学 地理 地质学 地图学 考古 海洋学 岩土工程
作者
Lina Stein,Martyn Clark,Wouter Knoben,Francesca Pianosi,Ross Woods
出处
期刊:Water Resources Research [Wiley]
卷期号:57 (4) 被引量:116
标识
DOI:10.1029/2020wr028300
摘要

Abstract Hydrometeorological flood generating processes (excess rain, short rain, long rain, snowmelt, and rain‐on‐snow) underpin our understanding of flood behavior. Knowledge about flood generating processes improves hydrological models, flood frequency analysis, estimation of climate change impact on floods, etc. Yet, not much is known about how climate and catchment attributes influence the spatial distribution of flood generating processes. This study aims to offer a comprehensive and structured approach to close this knowledge gap. We employ a large sample approach (671 catchments across the contiguous United States) and evaluate how catchment attributes and climate attributes influence the distribution of flood processes. We use two complementary approaches: A statistics‐based approach which compares attribute frequency distributions of different flood processes; and a random forest model in combination with an interpretable machine learning approach (accumulated local effects [ALE]). The ALE method has not been used often in hydrology, and it overcomes a significant obstacle in many statistical methods, the confounding effect of correlated catchment attributes. As expected, we find climate attributes (fraction of snow, aridity, precipitation seasonality, and mean precipitation) to be most influential on flood process distribution. However, the influence of catchment attributes varies both with flood generating process and climate type. We also find flood processes can be predicted for ungauged catchments with relatively high accuracy ( R 2 between 0.45 and 0.9). The implication of these findings is flood processes should be considered for future climate change impact studies, as the effect of changes in climate on flood characteristics varies between flood processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
通~发布了新的文献求助10
刚刚
可爱的函函应助体贴啤酒采纳,获得10
1秒前
李健应助gaos采纳,获得10
1秒前
2秒前
zmy发布了新的文献求助10
2秒前
电脑桌完成签到,获得积分10
3秒前
汉堡包应助咿咿呀呀采纳,获得10
4秒前
科研通AI5应助大胆遥采纳,获得10
4秒前
4秒前
标致的安荷完成签到,获得积分10
5秒前
ABin完成签到,获得积分10
5秒前
跳跃难胜发布了新的文献求助10
5秒前
阳光的虔纹完成签到 ,获得积分10
5秒前
6秒前
番茄爱喝粥完成签到,获得积分10
6秒前
CipherSage应助老王爱学习采纳,获得10
6秒前
Fa完成签到,获得积分10
6秒前
7秒前
kira完成签到,获得积分10
8秒前
舒服的茹嫣完成签到,获得积分20
8秒前
Stvn发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
明理的天蓝完成签到,获得积分10
10秒前
咳咳发布了新的文献求助10
10秒前
木叶研完成签到,获得积分10
10秒前
无花果应助通~采纳,获得10
10秒前
11秒前
12秒前
周助发布了新的文献求助10
12秒前
伯赏秋白完成签到,获得积分10
12秒前
慕青应助sunzhiyu233采纳,获得10
12秒前
Sherwin完成签到,获得积分10
12秒前
羽毛完成签到,获得积分20
13秒前
xiongjian发布了新的文献求助10
13秒前
一方通行完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740