How Do Climate and Catchment Attributes Influence Flood Generating Processes? A Large‐Sample Study for 671 Catchments Across the Contiguous USA

大洪水 水文气象 环境科学 融雪 气候变化 降水 百年一遇洪水 流域 水文学(农业) 洪水预报 暴发洪水 气候学 气象学 地理 地质学 地图学 考古 海洋学 岩土工程
作者
Lina Stein,Martyn Clark,Wouter Knoben,Francesca Pianosi,Ross Woods
出处
期刊:Water Resources Research [Wiley]
卷期号:57 (4) 被引量:116
标识
DOI:10.1029/2020wr028300
摘要

Abstract Hydrometeorological flood generating processes (excess rain, short rain, long rain, snowmelt, and rain‐on‐snow) underpin our understanding of flood behavior. Knowledge about flood generating processes improves hydrological models, flood frequency analysis, estimation of climate change impact on floods, etc. Yet, not much is known about how climate and catchment attributes influence the spatial distribution of flood generating processes. This study aims to offer a comprehensive and structured approach to close this knowledge gap. We employ a large sample approach (671 catchments across the contiguous United States) and evaluate how catchment attributes and climate attributes influence the distribution of flood processes. We use two complementary approaches: A statistics‐based approach which compares attribute frequency distributions of different flood processes; and a random forest model in combination with an interpretable machine learning approach (accumulated local effects [ALE]). The ALE method has not been used often in hydrology, and it overcomes a significant obstacle in many statistical methods, the confounding effect of correlated catchment attributes. As expected, we find climate attributes (fraction of snow, aridity, precipitation seasonality, and mean precipitation) to be most influential on flood process distribution. However, the influence of catchment attributes varies both with flood generating process and climate type. We also find flood processes can be predicted for ungauged catchments with relatively high accuracy ( R 2 between 0.45 and 0.9). The implication of these findings is flood processes should be considered for future climate change impact studies, as the effect of changes in climate on flood characteristics varies between flood processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fvsuar完成签到,获得积分10
1秒前
infinite完成签到,获得积分10
1秒前
请叫我风吹麦浪应助momo采纳,获得10
1秒前
riceyellow完成签到,获得积分10
2秒前
2秒前
赖建琛完成签到 ,获得积分10
2秒前
3秒前
3秒前
sevenvictory应助cadcae采纳,获得10
3秒前
jianrobsim完成签到,获得积分10
4秒前
pups发布了新的文献求助10
4秒前
4秒前
xiaobai完成签到,获得积分10
4秒前
Shen完成签到,获得积分10
4秒前
Gilana完成签到,获得积分10
5秒前
fst完成签到,获得积分10
5秒前
poegtam完成签到,获得积分10
5秒前
noflatterer完成签到,获得积分10
5秒前
6秒前
rsdggsrser完成签到 ,获得积分10
6秒前
jianrobsim发布了新的文献求助10
7秒前
April完成签到,获得积分10
7秒前
qingli完成签到,获得积分10
7秒前
庾储完成签到,获得积分10
7秒前
abcdefg完成签到,获得积分10
7秒前
8秒前
boxi完成签到 ,获得积分10
9秒前
9秒前
飞鱼完成签到,获得积分10
9秒前
Johnspeed完成签到,获得积分10
9秒前
小金鱼儿完成签到,获得积分10
9秒前
星辰与月完成签到,获得积分10
10秒前
Heidi完成签到 ,获得积分10
10秒前
休眠火山完成签到,获得积分10
10秒前
hi_zhanghao完成签到,获得积分0
10秒前
10秒前
zz568完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968608
求助须知:如何正确求助?哪些是违规求助? 3513486
关于积分的说明 11168243
捐赠科研通 3248926
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804676