CAFFNet: Channel Attention and Feature Fusion Network for Multi-target Traffic Sign Detection

计算机科学 交通标志识别 特征(语言学) 人工智能 模式识别(心理学) 棱锥(几何) 交通标志 特征提取 频道(广播) 背景(考古学) 符号(数学) 计算机视觉 数学 数学分析 计算机网络 语言学 哲学 古生物学 几何学 生物
作者
Feng Liu,Yurong Qian,Hua Li,Yongqiang Wang,Hao Zhang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (07): 2152008-2152008 被引量:14
标识
DOI:10.1142/s021800142152008x
摘要

The fact that the existing traffic sign images are easily affected by external factors, and the traffic signs are generally small targets on the images at different scales, has made it difficult in feature extraction when doing traffic sign detection. To achieve better detection results, a multi-target traffic sign detection method with channel attention and feature fusion network (CAFFNet in short) is proposed. This method effectively learns the correlation between feature channels through a lightweight channel attention network, realizes local cross-channel interaction without dimensionality reduction, and enhances the representation ability of the network. The feature pyramid network is used to achieve feature fusion and generate high-resolution multiscale semantic information. The dilated convolution is utilized to capture the multiscale context information to narrow the difference between features and improve the detection effect of the model. The experimental results show that the proposed method on the two datasets GTSDB and CTSD has achieved superior performance in the evaluation criteria compared with the existing detection algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助张俊敏采纳,获得10
刚刚
晟sheng完成签到 ,获得积分10
刚刚
刚刚
wanci应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得100
刚刚
蓝天应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
ssshs应助科研通管家采纳,获得10
刚刚
asdfzxcv应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
curtisness应助忆往昔采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
1秒前
打打应助科研通管家采纳,获得10
1秒前
江郁清完成签到 ,获得积分10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
田様应助糟糕的铁锤采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
ssshs应助科研通管家采纳,获得10
2秒前
SusanYan发布了新的文献求助10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721239
求助须知:如何正确求助?哪些是违规求助? 5264932
关于积分的说明 15293624
捐赠科研通 4870549
什么是DOI,文献DOI怎么找? 2615518
邀请新用户注册赠送积分活动 1565353
关于科研通互助平台的介绍 1522370