最大值和最小值
晶体结构预测
密度泛函理论
接口(物质)
计算机科学
晶体结构
放松(心理学)
财产(哲学)
晶界
统计物理学
电子结构
材料科学
工作(物理)
关系(数据库)
化学物理
物理
数据挖掘
凝聚态物理
计算化学
结晶学
数学
化学
热力学
气泡
心理学
冶金
社会心理学
并行计算
微观结构
哲学
数学分析
最大气泡压力法
认识论
作者
Lin Sun,Miguel A. L. Marques,Silvana Botti
标识
DOI:10.1038/s41467-020-20855-0
摘要
Abstract A major issue that prevents a full understanding of heterogeneous materials is the lack of systematic first-principles methods to consistently predict energetics and electronic properties of reconstructed interfaces. In this work we address this problem with an efficient and accurate computational scheme. We extend the minima-hopping method implementing constraints crafted for two-dimensional atomic relaxation and enabling variations of the atomic density close to the interface. A combination of density-functional and accurate density-functional tight-binding calculations supply energy and forces to structure prediction. We demonstrate the power of this method by applying it to extract structure-property relations for a large and varied family of symmetric and asymmetric tilt boundaries in polycrystalline silicon. We find a rich polymorphism in the interface reconstructions, with recurring bonding patterns that we classify in increasing energetic order. Finally, a clear relation between bonding patterns and electrically active grain boundary states is unveiled and discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI