Automated pavement crack detection and segmentation based on two‐step convolutional neural network

分割 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 开裂 深度学习 人工神经网络 材料科学 复合材料
作者
Jingwei Liu,Xu Yang,Stephen Lau,Xin Wang,Sang Luo,Vincent C. S. Lee,Ling Ding
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (11): 1291-1305 被引量:334
标识
DOI:10.1111/mice.12622
摘要

Abstract Cracking is a common pavement distress that would cause further severe problems if not repaired timely, which means that it is important to accurately extract the information of pavement cracks through detection and segmentation. Automated pavement crack detection and segmentation using deep learning are more efficient and accurate than conventional methods, which could be further improved. While many existing studies have utilized deep learning in pavement crack segmentation, which segments cracks from non‐crack regions, few studies have taken the exact pavement crack detection into account, which identifies cracks in the images from other objects. A two‐step pavement crack detection and segmentation method based on convolutional neural network was proposed in this paper. An automated pavement crack detection algorithm was developed using the modified You Only Look Once 3rd version in the first step. The proposed crack segmentation method in the second step was based on the modified U‐Net, whose encoder was replaced with a pre‐trained ResNet‐34 and the up‐sample part was added with spatial and channel squeeze and excitation (SCSE) modules. Proposed method combines pavement crack detection and segmentation together, so that the detected cracks from the first step are segmented in the second step to improve the accuracy. A dataset of pavement crack images in different circumstances were also built for the study. The F1 score of proposed crack detection and segmentation methods are 90.58% and 95.75%, respectively, which are higher than other state‐of‐the‐art methods. Compared with existing one‐step pavement crack detection or segmentation methods, proposed two‐step method showed advantages of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
出厂价完成签到,获得积分10
刚刚
Shaohan完成签到,获得积分10
2秒前
王继完成签到,获得积分10
2秒前
合适鲂完成签到,获得积分10
6秒前
卡卡西完成签到,获得积分10
6秒前
Yi完成签到,获得积分10
6秒前
背后如之完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
simon666完成签到,获得积分10
9秒前
maybe完成签到,获得积分10
9秒前
卡片完成签到,获得积分10
9秒前
MaxwellZH完成签到,获得积分10
10秒前
愤怒的水绿完成签到,获得积分10
13秒前
hahaha6789y完成签到,获得积分10
13秒前
junzzz完成签到 ,获得积分10
13秒前
霡霂完成签到,获得积分10
13秒前
BlueKitty完成签到,获得积分10
14秒前
Walton完成签到,获得积分10
15秒前
cl完成签到,获得积分10
15秒前
sheep完成签到,获得积分10
15秒前
Bake完成签到 ,获得积分10
15秒前
surlamper完成签到,获得积分10
16秒前
Mo完成签到,获得积分10
16秒前
hahaha2完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
婉枫完成签到,获得积分10
17秒前
徐彬荣完成签到,获得积分10
17秒前
往昔不过微澜完成签到,获得积分10
17秒前
spider534完成签到,获得积分10
18秒前
好好应助科研通管家采纳,获得10
18秒前
好好应助科研通管家采纳,获得10
18秒前
好好应助科研通管家采纳,获得10
18秒前
好好应助科研通管家采纳,获得10
18秒前
18秒前
好好应助科研通管家采纳,获得10
18秒前
18秒前
TGU的小马同学完成签到 ,获得积分10
18秒前
18秒前
18秒前
量子咸鱼K完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664739
求助须知:如何正确求助?哪些是违规求助? 4868979
关于积分的说明 15108502
捐赠科研通 4823434
什么是DOI,文献DOI怎么找? 2582356
邀请新用户注册赠送积分活动 1536359
关于科研通互助平台的介绍 1494797