Automated pavement crack detection and segmentation based on two‐step convolutional neural network

分割 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 开裂 深度学习 人工神经网络 材料科学 复合材料
作者
Jingwei Liu,Xu Yang,Stephen Lau,Xin Wang,Sang Luo,Vincent C. S. Lee,Ling Ding
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (11): 1291-1305 被引量:334
标识
DOI:10.1111/mice.12622
摘要

Abstract Cracking is a common pavement distress that would cause further severe problems if not repaired timely, which means that it is important to accurately extract the information of pavement cracks through detection and segmentation. Automated pavement crack detection and segmentation using deep learning are more efficient and accurate than conventional methods, which could be further improved. While many existing studies have utilized deep learning in pavement crack segmentation, which segments cracks from non‐crack regions, few studies have taken the exact pavement crack detection into account, which identifies cracks in the images from other objects. A two‐step pavement crack detection and segmentation method based on convolutional neural network was proposed in this paper. An automated pavement crack detection algorithm was developed using the modified You Only Look Once 3rd version in the first step. The proposed crack segmentation method in the second step was based on the modified U‐Net, whose encoder was replaced with a pre‐trained ResNet‐34 and the up‐sample part was added with spatial and channel squeeze and excitation (SCSE) modules. Proposed method combines pavement crack detection and segmentation together, so that the detected cracks from the first step are segmented in the second step to improve the accuracy. A dataset of pavement crack images in different circumstances were also built for the study. The F1 score of proposed crack detection and segmentation methods are 90.58% and 95.75%, respectively, which are higher than other state‐of‐the‐art methods. Compared with existing one‐step pavement crack detection or segmentation methods, proposed two‐step method showed advantages of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
li发布了新的文献求助10
2秒前
李爱国应助杨小鸿采纳,获得10
2秒前
5秒前
6秒前
天天快乐应助li采纳,获得10
7秒前
fafa发布了新的文献求助10
8秒前
9秒前
爱听歌的熊仔完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
w123发布了新的文献求助10
11秒前
打打应助Zyc采纳,获得10
12秒前
有本事1234完成签到,获得积分10
12秒前
haru完成签到,获得积分10
14秒前
14秒前
科研通AI6.1应助尊敬的采纳,获得10
15秒前
陈豆豆发布了新的文献求助10
15秒前
yang发布了新的文献求助10
16秒前
16秒前
JamesPei应助xutaiyu采纳,获得10
18秒前
19秒前
HWX完成签到 ,获得积分10
19秒前
LJQ发布了新的文献求助10
19秒前
Jessie完成签到,获得积分10
19秒前
w123完成签到,获得积分10
20秒前
Dream完成签到,获得积分0
21秒前
大模型应助陈豆豆采纳,获得10
21秒前
山井寿完成签到 ,获得积分10
21秒前
跳跳熊完成签到,获得积分10
21秒前
22秒前
研友_8KAzAn完成签到,获得积分10
22秒前
24秒前
Zyc发布了新的文献求助10
25秒前
乐观的穆关注了科研通微信公众号
25秒前
李木子完成签到 ,获得积分10
27秒前
wayne完成签到 ,获得积分10
27秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044