重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Automated pavement crack detection and segmentation based on two‐step convolutional neural network

分割 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 开裂 深度学习 人工神经网络 材料科学 复合材料
作者
Jingwei Liu,Xu Yang,Stephen Lau,Xin Wang,Sang Luo,Vincent C. S. Lee,Ling Ding
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (11): 1291-1305 被引量:334
标识
DOI:10.1111/mice.12622
摘要

Abstract Cracking is a common pavement distress that would cause further severe problems if not repaired timely, which means that it is important to accurately extract the information of pavement cracks through detection and segmentation. Automated pavement crack detection and segmentation using deep learning are more efficient and accurate than conventional methods, which could be further improved. While many existing studies have utilized deep learning in pavement crack segmentation, which segments cracks from non‐crack regions, few studies have taken the exact pavement crack detection into account, which identifies cracks in the images from other objects. A two‐step pavement crack detection and segmentation method based on convolutional neural network was proposed in this paper. An automated pavement crack detection algorithm was developed using the modified You Only Look Once 3rd version in the first step. The proposed crack segmentation method in the second step was based on the modified U‐Net, whose encoder was replaced with a pre‐trained ResNet‐34 and the up‐sample part was added with spatial and channel squeeze and excitation (SCSE) modules. Proposed method combines pavement crack detection and segmentation together, so that the detected cracks from the first step are segmented in the second step to improve the accuracy. A dataset of pavement crack images in different circumstances were also built for the study. The F1 score of proposed crack detection and segmentation methods are 90.58% and 95.75%, respectively, which are higher than other state‐of‐the‐art methods. Compared with existing one‐step pavement crack detection or segmentation methods, proposed two‐step method showed advantages of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高凡发布了新的文献求助10
刚刚
沉默的瑞宝完成签到,获得积分10
刚刚
打工人完成签到,获得积分10
刚刚
研友_V8RdVn完成签到,获得积分10
刚刚
张祖伦发布了新的文献求助10
1秒前
1秒前
Akim应助吴彦祖采纳,获得10
1秒前
1秒前
廷聿发布了新的文献求助10
1秒前
bestkomorebi完成签到,获得积分10
1秒前
1秒前
2秒前
踏实的雨灵完成签到,获得积分10
2秒前
2秒前
2秒前
流木发布了新的文献求助10
2秒前
haha关注了科研通微信公众号
2秒前
3秒前
思源应助艾灿采纳,获得10
3秒前
gt发布了新的文献求助20
3秒前
彭于晏应助哭泣的煎饼采纳,获得10
4秒前
行路人完成签到,获得积分10
4秒前
韩小小完成签到 ,获得积分10
4秒前
欢喜海发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
科目三应助hfut_lee采纳,获得10
6秒前
6秒前
脑洞疼应助缓慢冷风采纳,获得10
6秒前
姜且完成签到,获得积分10
6秒前
小落看不完完成签到,获得积分10
6秒前
Cindy完成签到,获得积分20
7秒前
7秒前
零三零发布了新的文献求助10
8秒前
8秒前
123noo发布了新的文献求助10
8秒前
天天快乐应助喜悦悟空采纳,获得10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654