Automated pavement crack detection and segmentation based on two‐step convolutional neural network

分割 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 开裂 深度学习 人工神经网络 材料科学 复合材料
作者
Jingwei Liu,Xu Yang,Stephen L. H. Lau,Xin Wang,Sang Luo,Vincent C. S. Lee,Ling Ding
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (11): 1291-1305 被引量:227
标识
DOI:10.1111/mice.12622
摘要

Abstract Cracking is a common pavement distress that would cause further severe problems if not repaired timely, which means that it is important to accurately extract the information of pavement cracks through detection and segmentation. Automated pavement crack detection and segmentation using deep learning are more efficient and accurate than conventional methods, which could be further improved. While many existing studies have utilized deep learning in pavement crack segmentation, which segments cracks from non‐crack regions, few studies have taken the exact pavement crack detection into account, which identifies cracks in the images from other objects. A two‐step pavement crack detection and segmentation method based on convolutional neural network was proposed in this paper. An automated pavement crack detection algorithm was developed using the modified You Only Look Once 3rd version in the first step. The proposed crack segmentation method in the second step was based on the modified U‐Net, whose encoder was replaced with a pre‐trained ResNet‐34 and the up‐sample part was added with spatial and channel squeeze and excitation (SCSE) modules. Proposed method combines pavement crack detection and segmentation together, so that the detected cracks from the first step are segmented in the second step to improve the accuracy. A dataset of pavement crack images in different circumstances were also built for the study. The F1 score of proposed crack detection and segmentation methods are 90.58% and 95.75%, respectively, which are higher than other state‐of‐the‐art methods. Compared with existing one‐step pavement crack detection or segmentation methods, proposed two‐step method showed advantages of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qx发布了新的文献求助10
刚刚
big ben完成签到 ,获得积分10
1秒前
pophoo完成签到,获得积分10
1秒前
小北完成签到,获得积分10
2秒前
Laputa完成签到,获得积分10
3秒前
月光族完成签到,获得积分10
3秒前
faye完成签到,获得积分10
4秒前
任性的皮卡丘完成签到 ,获得积分10
5秒前
明理夏槐发布了新的文献求助10
5秒前
王正浩完成签到 ,获得积分10
6秒前
天马行空完成签到,获得积分10
7秒前
just完成签到,获得积分10
7秒前
锦秋完成签到 ,获得积分10
8秒前
qingxinhuo完成签到 ,获得积分10
8秒前
shuqi完成签到 ,获得积分10
9秒前
刘zx完成签到,获得积分10
10秒前
隐形芯完成签到 ,获得积分10
10秒前
张真狗完成签到,获得积分10
11秒前
12秒前
喜悦松完成签到,获得积分10
14秒前
娟娟完成签到 ,获得积分10
14秒前
plumcute完成签到,获得积分10
15秒前
手术刀完成签到 ,获得积分10
15秒前
15秒前
吨吨完成签到,获得积分10
16秒前
沫荔完成签到 ,获得积分10
16秒前
18秒前
来日方长应助张真狗采纳,获得10
19秒前
Tianju完成签到,获得积分10
19秒前
qx发布了新的文献求助10
19秒前
苏芳完成签到,获得积分10
20秒前
135完成签到 ,获得积分10
20秒前
20秒前
松鼠15111完成签到,获得积分10
21秒前
科研通AI2S应助整齐百褶裙采纳,获得10
22秒前
小黑完成签到 ,获得积分20
22秒前
熊博士完成签到,获得积分10
23秒前
25秒前
墨尔根戴青完成签到,获得积分10
25秒前
小北驳回了scm应助
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027