已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated pavement crack detection and segmentation based on two‐step convolutional neural network

分割 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 开裂 深度学习 人工神经网络 材料科学 复合材料
作者
Jingwei Liu,Xu Yang,Stephen Lau,Xin Wang,Sang Luo,Vincent C. S. Lee,Ling Ding
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (11): 1291-1305 被引量:334
标识
DOI:10.1111/mice.12622
摘要

Abstract Cracking is a common pavement distress that would cause further severe problems if not repaired timely, which means that it is important to accurately extract the information of pavement cracks through detection and segmentation. Automated pavement crack detection and segmentation using deep learning are more efficient and accurate than conventional methods, which could be further improved. While many existing studies have utilized deep learning in pavement crack segmentation, which segments cracks from non‐crack regions, few studies have taken the exact pavement crack detection into account, which identifies cracks in the images from other objects. A two‐step pavement crack detection and segmentation method based on convolutional neural network was proposed in this paper. An automated pavement crack detection algorithm was developed using the modified You Only Look Once 3rd version in the first step. The proposed crack segmentation method in the second step was based on the modified U‐Net, whose encoder was replaced with a pre‐trained ResNet‐34 and the up‐sample part was added with spatial and channel squeeze and excitation (SCSE) modules. Proposed method combines pavement crack detection and segmentation together, so that the detected cracks from the first step are segmented in the second step to improve the accuracy. A dataset of pavement crack images in different circumstances were also built for the study. The F1 score of proposed crack detection and segmentation methods are 90.58% and 95.75%, respectively, which are higher than other state‐of‐the‐art methods. Compared with existing one‐step pavement crack detection or segmentation methods, proposed two‐step method showed advantages of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助lwl采纳,获得10
2秒前
chigga发布了新的文献求助10
2秒前
liuniuniu发布了新的文献求助10
3秒前
cwy完成签到,获得积分10
4秒前
酷波er应助桐嘉采纳,获得10
4秒前
fdwonder完成签到,获得积分10
5秒前
别当真完成签到 ,获得积分10
9秒前
wq完成签到 ,获得积分10
9秒前
NexusExplorer应助野猪空手道采纳,获得10
10秒前
猫哈哈完成签到,获得积分10
10秒前
77777完成签到 ,获得积分10
11秒前
000v000完成签到,获得积分10
11秒前
风中芷容完成签到 ,获得积分10
11秒前
星辰大海应助liuniuniu采纳,获得10
11秒前
LX有理想完成签到 ,获得积分10
12秒前
nihao完成签到,获得积分20
12秒前
12秒前
李健的小迷弟应助小林采纳,获得10
13秒前
科研通AI6.1应助群山采纳,获得10
14秒前
研友_R2D2完成签到,获得积分10
14秒前
4114完成签到,获得积分10
16秒前
小艾同学完成签到 ,获得积分20
18秒前
如意凝云发布了新的文献求助20
18秒前
19秒前
MiRoRo完成签到 ,获得积分10
19秒前
kai chen完成签到 ,获得积分0
20秒前
852应助liuniuniu采纳,获得10
21秒前
joe完成签到,获得积分10
21秒前
黑巧的融化完成签到 ,获得积分10
21秒前
miao发布了新的文献求助30
22秒前
22秒前
盐植物完成签到,获得积分10
23秒前
王木木完成签到 ,获得积分10
23秒前
康康完成签到 ,获得积分10
23秒前
三月完成签到,获得积分10
23秒前
少年锦时完成签到,获得积分10
26秒前
26秒前
彭于晏应助贾靖涵采纳,获得30
28秒前
28秒前
徐嘎嘎发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771975
求助须知:如何正确求助?哪些是违规求助? 5594820
关于积分的说明 15428720
捐赠科研通 4905144
什么是DOI,文献DOI怎么找? 2639238
邀请新用户注册赠送积分活动 1587134
关于科研通互助平台的介绍 1542004