亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated pavement crack detection and segmentation based on two‐step convolutional neural network

分割 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 开裂 深度学习 人工神经网络 材料科学 复合材料
作者
Jingwei Liu,Xu Yang,Stephen L. H. Lau,Xin Wang,Sang Luo,Vincent C. S. Lee,Ling Ding
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (11): 1291-1305 被引量:227
标识
DOI:10.1111/mice.12622
摘要

Abstract Cracking is a common pavement distress that would cause further severe problems if not repaired timely, which means that it is important to accurately extract the information of pavement cracks through detection and segmentation. Automated pavement crack detection and segmentation using deep learning are more efficient and accurate than conventional methods, which could be further improved. While many existing studies have utilized deep learning in pavement crack segmentation, which segments cracks from non‐crack regions, few studies have taken the exact pavement crack detection into account, which identifies cracks in the images from other objects. A two‐step pavement crack detection and segmentation method based on convolutional neural network was proposed in this paper. An automated pavement crack detection algorithm was developed using the modified You Only Look Once 3rd version in the first step. The proposed crack segmentation method in the second step was based on the modified U‐Net, whose encoder was replaced with a pre‐trained ResNet‐34 and the up‐sample part was added with spatial and channel squeeze and excitation (SCSE) modules. Proposed method combines pavement crack detection and segmentation together, so that the detected cracks from the first step are segmented in the second step to improve the accuracy. A dataset of pavement crack images in different circumstances were also built for the study. The F1 score of proposed crack detection and segmentation methods are 90.58% and 95.75%, respectively, which are higher than other state‐of‐the‐art methods. Compared with existing one‐step pavement crack detection or segmentation methods, proposed two‐step method showed advantages of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
玛琳卡迪马完成签到,获得积分10
8秒前
ceeray23发布了新的文献求助20
8秒前
11秒前
33秒前
科目三应助NiuNiu采纳,获得10
34秒前
chentao发布了新的文献求助30
36秒前
Owen应助chentao采纳,获得30
42秒前
1分钟前
韦一手完成签到,获得积分10
1分钟前
Criminology34应助淳恨战士采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
Hands完成签到,获得积分10
1分钟前
1分钟前
2分钟前
YZChen完成签到,获得积分10
2分钟前
Marciu33发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
风停了完成签到,获得积分10
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
Perry完成签到,获得积分10
3分钟前
3分钟前
3分钟前
本本完成签到 ,获得积分10
3分钟前
小二郎应助高大的盼曼采纳,获得10
3分钟前
jerry完成签到 ,获得积分10
4分钟前
4分钟前
高大的盼曼完成签到,获得积分20
4分钟前
4分钟前
Gryphon完成签到,获得积分10
4分钟前
4分钟前
江医森爱吃肉完成签到,获得积分10
4分钟前
淡逆月发布了新的文献求助10
4分钟前
4分钟前
善哉山寨发布了新的文献求助10
4分钟前
善哉山寨完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042798
求助须知:如何正确求助?哪些是违规求助? 4273215
关于积分的说明 13322187
捐赠科研通 4086121
什么是DOI,文献DOI怎么找? 2235587
邀请新用户注册赠送积分活动 1243086
关于科研通互助平台的介绍 1170243