Automated pavement crack detection and segmentation based on two‐step convolutional neural network

分割 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 开裂 深度学习 人工神经网络 材料科学 复合材料
作者
Jingwei Liu,Xu Yang,Stephen L. H. Lau,Xin Wang,Sang Luo,Vincent C. S. Lee,Ling Ding
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (11): 1291-1305 被引量:227
标识
DOI:10.1111/mice.12622
摘要

Abstract Cracking is a common pavement distress that would cause further severe problems if not repaired timely, which means that it is important to accurately extract the information of pavement cracks through detection and segmentation. Automated pavement crack detection and segmentation using deep learning are more efficient and accurate than conventional methods, which could be further improved. While many existing studies have utilized deep learning in pavement crack segmentation, which segments cracks from non‐crack regions, few studies have taken the exact pavement crack detection into account, which identifies cracks in the images from other objects. A two‐step pavement crack detection and segmentation method based on convolutional neural network was proposed in this paper. An automated pavement crack detection algorithm was developed using the modified You Only Look Once 3rd version in the first step. The proposed crack segmentation method in the second step was based on the modified U‐Net, whose encoder was replaced with a pre‐trained ResNet‐34 and the up‐sample part was added with spatial and channel squeeze and excitation (SCSE) modules. Proposed method combines pavement crack detection and segmentation together, so that the detected cracks from the first step are segmented in the second step to improve the accuracy. A dataset of pavement crack images in different circumstances were also built for the study. The F1 score of proposed crack detection and segmentation methods are 90.58% and 95.75%, respectively, which are higher than other state‐of‐the‐art methods. Compared with existing one‐step pavement crack detection or segmentation methods, proposed two‐step method showed advantages of accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅辰发布了新的文献求助10
1秒前
妖孽的二狗完成签到 ,获得积分10
1秒前
末影完成签到,获得积分10
2秒前
2秒前
张张完成签到 ,获得积分10
3秒前
举栗子完成签到 ,获得积分10
9秒前
洁净的酸奶完成签到,获得积分10
10秒前
10秒前
枫竹完成签到 ,获得积分10
12秒前
13秒前
14秒前
vvvvvvv完成签到 ,获得积分10
16秒前
16秒前
17秒前
19秒前
871624521发布了新的文献求助10
20秒前
cox完成签到,获得积分10
20秒前
Lucas应助八戒的梦想采纳,获得10
24秒前
24秒前
24秒前
25秒前
汉堡包应助871624521采纳,获得10
25秒前
李健的小迷弟应助鲸鱼采纳,获得10
27秒前
九香虫完成签到,获得积分10
28秒前
29秒前
Owen应助测测采纳,获得10
29秒前
高兴冥茗发布了新的文献求助10
30秒前
30秒前
桐桐应助小点点采纳,获得10
31秒前
开朗台灯发布了新的文献求助10
31秒前
写得出发的中完成签到,获得积分10
32秒前
32秒前
liang完成签到,获得积分10
32秒前
33秒前
瑞_应助Onlyyou采纳,获得10
35秒前
35秒前
清爽行天发布了新的文献求助10
37秒前
tramp应助老实皮卡丘采纳,获得10
38秒前
肖大神完成签到,获得积分10
38秒前
111发布了新的文献求助10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313480
求助须知:如何正确求助?哪些是违规求助? 2945844
关于积分的说明 8527242
捐赠科研通 2621522
什么是DOI,文献DOI怎么找? 1433713
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650600