清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Systematic Evaluation of the Mechanisms of Mulberry Leaf (Morus alba Linne) Acting on Diabetes Based on Network Pharmacology and Molecular Docking

计算生物学 广告 交互网络 基因本体论 生物 药理学 系统药理学 药品 基因 遗传学 基因表达
作者
Qiguo Wu,Yeqing Hu
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:24 (5): 668-682 被引量:17
标识
DOI:10.2174/1386207323666200914103719
摘要

Diabetes mellitus is one of the most common endocrine metabolic disorder- related diseases. The application of herbal medicine to control glucose levels and improve insulin action might be a useful approach in the treatment of diabetes. Mulberry leaves (ML) have been reported to exert important activities of anti-diabetic.In this work, we aimed to explore the multi-targets and multi-pathways regulatory molecular mechanism of Mulberry leaves (ML, Morus alba Linne) acting on diabetes.Identification of active compounds of Mulberry leaves using Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was carried out. Bioactive components were screened by FAF-Drugs4 website (Free ADME-Tox Filtering Tool). The targets of bioactive components were predicted from SwissTargetPrediction website, and the diabetes related targets were screened from GeneCards database. The common targets of ML and diabetes were used for Gene Ontology (GO) and pathway enrichment analysis. The visualization networks were constructed by Cytoscape 3.7.1 software. The biological networks were constructed to analyze the mechanisms as follows: (1) compound-target network; (2) common target-compound network; (3) common targets protein interaction network; (4) compound-diabetes protein-protein interactions (ppi) network; (5) target-pathway network; and (6) compound-target-pathway network. At last, the prediction results of network pharmacology were verified by molecular docking method.17 active components were obtained by TCMSP database and FAF-Drugs4 website. 51 potential targets (11 common targets and 40 associated indirect targets) were obtained and used to build the PPI network by the String database. Furthermore, the potential targets were used for GO and pathway enrichment analysis. Eight key active compounds (quercetin, Iristectorigenin A, 4- Prenylresveratrol, Moracin H, Moracin C, Isoramanone, Moracin E and Moracin D) and 8 key targets (AKT1, IGF1R, EIF2AK3, PPARG, AGTR1, PPARA, PTPN1 and PIK3R1) were obtained to play major roles in Mulberry leaf acting on diabetes. And the signal pathways involved in the mechanisms mainly include AMPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, insulin signaling pathway and insulin resistance. The molecular docking results show that the 8 key active compounds have good affinity with the key target of AKT1, and the 5 key targets (IGF1R, EIF2AK3, PPARG, PPARA and PTPN1) have better affinity than AKT1 with the key compound of quercetin.Based on network pharmacology and molecular docking, this study provided an important systematic and visualized basis for further understanding of the synergy mechanism of ML acting on diabetes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
13秒前
zzgpku完成签到,获得积分0
41秒前
44秒前
47秒前
53秒前
李健应助天天采纳,获得10
54秒前
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
1分钟前
逸云发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
球祝完成签到,获得积分10
1分钟前
2分钟前
归尘发布了新的文献求助10
2分钟前
欠缺完成签到,获得积分20
2分钟前
研友_VZG7GZ应助凉宫八月采纳,获得10
2分钟前
逸云完成签到,获得积分10
2分钟前
2分钟前
凉宫八月发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
4分钟前
凉宫八月完成签到,获得积分10
4分钟前
XZY发布了新的文献求助10
4分钟前
顾矜应助Wa1Zh0u采纳,获得10
4分钟前
4分钟前
知行者完成签到 ,获得积分10
4分钟前
Ttimer完成签到,获得积分10
4分钟前
5分钟前
深情安青应助ajing采纳,获得10
5分钟前
tt完成签到,获得积分10
5分钟前
5分钟前
酷酷的紫南完成签到 ,获得积分10
6分钟前
JamesPei应助无情的琳采纳,获得30
6分钟前
6分钟前
完美世界应助科研通管家采纳,获得10
6分钟前
科目三应助科研通管家采纳,获得10
6分钟前
叶上初阳完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724137
求助须知:如何正确求助?哪些是违规求助? 5285050
关于积分的说明 15299615
捐赠科研通 4872220
什么是DOI,文献DOI怎么找? 2616750
邀请新用户注册赠送积分活动 1566605
关于科研通互助平台的介绍 1523490