Vehicle Trajectory Prediction Based on Motion Model and Maneuver Model Fusion with Interactive Multiple Models

弹道 计算机科学 运动(物理) 加速度 卡尔曼滤波器 人工智能 控制理论(社会学) 高级驾驶员辅助系统 模拟 控制(管理) 天文 经典力学 物理
作者
Wei Xiao,Lijun Zhang,Dejian Meng
出处
期刊:SAE International Journal of Advances and Current Practices in Mobility 卷期号:2 (6): 3060-3071 被引量:13
标识
DOI:10.4271/2020-01-0112
摘要

<div class="section abstract"><div class="htmlview paragraph">Safety is the cornerstone for Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems (ADS). To assess the safety of a traffic situation, it is essential to predict motion states of traffic participants in the future with mathematic models. Accurate vehicle trajectory prediction is an important prerequisite for reasonable traffic situation risk assessment and appropriate decision making. Vehicle trajectory prediction methods can be generally divided into motion model based methods and maneuver model based methods. Vehicle trajectory prediction based on motion models can be accurate and reliable only in the short term. While vehicle trajectory prediction based on maneuver models present more satisfactory performance in the long term, these maneuver models rely on machine learning methods. Abundant data should be collected to train the maneuver recognition model, which increases complexity and lowers real-time performance. In this paper, a vehicle trajectory prediction method based on motion model and maneuver model fusion with Interactive Multiple Model (IMM) is proposed. Firstly, Constant Turn Rate and Acceleration (CTRA) motion model and Unscented Kalman Filter (UKF) are used to predict vehicle trajectory with uncertainty in the future. Then, vehicle trajectory prediction based on simplified maneuver recognition model is conducted, using temporal and spatial relationship between vehicle historical trajectory and lane lines. After that, vehicle trajectory prediction by integrating motion model and maneuver model with IMM is conducted. Finally, the proposed method is compared with CTRA motion model based vehicle trajectory prediction and lane keeping model (LKM) based vehicle trajectory prediction in two simulation test scenarios. The simulation results indicates that the IMM-based method achieves both excellent prediction accuracy and appropriate prediction uncertainty in the whole prediction horizon. This research can be used to support decision making for Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems and leads to improvement of traffic safety.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇娇大王完成签到,获得积分10
3秒前
善学以致用应助liudy采纳,获得10
4秒前
652183758完成签到 ,获得积分20
4秒前
13秒前
liudy完成签到,获得积分10
14秒前
liudy发布了新的文献求助10
17秒前
WHY完成签到 ,获得积分10
17秒前
喝酸奶不舔盖完成签到 ,获得积分10
18秒前
穆一手完成签到 ,获得积分10
19秒前
望TIAN完成签到 ,获得积分10
29秒前
S.完成签到 ,获得积分10
31秒前
李健的小迷弟应助CAST1347采纳,获得10
31秒前
hsrlbc完成签到,获得积分10
32秒前
科研狗完成签到 ,获得积分10
33秒前
平淡访冬完成签到 ,获得积分10
33秒前
奔跑的青霉素完成签到 ,获得积分10
36秒前
37秒前
42秒前
42秒前
CAST1347发布了新的文献求助10
49秒前
迅速的念芹完成签到 ,获得积分10
50秒前
小李新人完成签到 ,获得积分10
50秒前
jkaaa完成签到,获得积分10
51秒前
赘婿应助Singularity采纳,获得10
1分钟前
SDNUDRUG发布了新的文献求助10
1分钟前
tianliyan完成签到 ,获得积分10
1分钟前
chenbin完成签到,获得积分10
1分钟前
sjx_13351766056完成签到 ,获得积分10
1分钟前
SDNUDRUG完成签到,获得积分10
1分钟前
陈米花完成签到,获得积分10
1分钟前
yyjl31完成签到,获得积分10
1分钟前
Simon_chat完成签到,获得积分10
1分钟前
吐司炸弹完成签到,获得积分10
1分钟前
mayfly完成签到,获得积分10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
CAST1347完成签到,获得积分10
1分钟前
Amy完成签到 ,获得积分10
1分钟前
清逸之风完成签到 ,获得积分10
1分钟前
Jasmineyfz完成签到 ,获得积分10
1分钟前
科目三应助Singularity采纳,获得10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126186
求助须知:如何正确求助?哪些是违规求助? 2776349
关于积分的说明 7729904
捐赠科研通 2431800
什么是DOI,文献DOI怎么找? 1292298
科研通“疑难数据库(出版商)”最低求助积分说明 622696
版权声明 600430