Enhanced Electrical Transport Properties via Defect Control for Screen-Printed Bi2Te3 Films over a Wide Temperature Range

材料科学 航程(航空) 大气温度范围 光电子学 纳米技术 工程物理 复合材料 热力学 物理 工程类
作者
Jingjing Feng,Wei Zhu,Shouxin Zhang,Lili Cao,Yuedong Yu,Yuan Deng
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (14): 16630-16638 被引量:32
标识
DOI:10.1021/acsami.0c01049
摘要

The application of screen-printed thin-film thermoelectric (TE) devices is still in its infancy, mainly due to low TE performance of screen-printed films and especially the poor electrical transport properties. Herein, we design and prepare a high-performance screen-printed Bi2Te3 film through introducing excessive Te-based nanosolder (Te-NS) to simultaneously realize the conduction channel construction and defect control. On one hand, the promoted carrier migration makes the electrical conductivity dramatically rise about 7 times, with a maximum power factor of 4.65 μW cm –1 K –2. Meanwhile, the defect formation mechanism in the screen-printed Bi2Te3 film after the introduction of Te-NS is also in-depth studied, and the bipolar conduction is reduced by increased generation of TeBi• and/or more suppression of BiTe′, resulting in a postponed temperature of the maximum Seebeck coefficient. Hence, the large engineering power factor is achieved with excellent temperature linearity, indicating a possibility of screen-printed film application in a large temperature region. A TE device with a single leg has been fabricated to further demonstrate the generation validity. An open-circuit voltage of 11.34 mV and a maximum output power of 27.1 μW at a temperature gradient of 105 K have been achieved over a wide temperature range from 303 to 478 K. This study provides a theoretical and practical basis for the performance improvement of screen-printed TE films and devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的问旋应助Li猪猪采纳,获得10
刚刚
钰c完成签到,获得积分10
1秒前
心灵美的白易完成签到,获得积分10
1秒前
勤劳冰烟完成签到,获得积分10
3秒前
雨雾完成签到,获得积分10
3秒前
斯文败类应助凶狠的乐巧采纳,获得10
3秒前
3秒前
生言生语完成签到,获得积分10
3秒前
alick发布了新的文献求助10
4秒前
钰c发布了新的文献求助10
4秒前
Maggie完成签到 ,获得积分10
4秒前
四月是一只爱猫的羊完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
打打应助嘟嘟请让一让采纳,获得10
6秒前
专一完成签到,获得积分10
6秒前
Lucas应助九川采纳,获得10
6秒前
yl关闭了yl文献求助
6秒前
7秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
7秒前
7秒前
丘比特应助卡卡采纳,获得10
8秒前
8秒前
毛毛发布了新的文献求助10
8秒前
ljx完成签到 ,获得积分10
8秒前
活力山蝶应助小白采纳,获得10
11秒前
xg完成签到,获得积分10
11秒前
Zezezee发布了新的文献求助10
11秒前
笑点低可乐完成签到,获得积分10
12秒前
12秒前
坚强的樱发布了新的文献求助10
12秒前
12秒前
求解限发布了新的文献求助160
12秒前
13秒前
白宝宝北北白应助XIN采纳,获得10
13秒前
wenjian发布了新的文献求助10
13秒前
14秒前
华仔应助jy采纳,获得10
14秒前
hoongyan完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794