自噬
骨髓
外周血单个核细胞
免疫学
发病机制
干细胞
医学
细胞凋亡
生物
细胞生物学
生物化学
体外
作者
Jie Tang,Ziming Ye,Yi Liu,Mengxiao Zhou,Liqiang Huang,Qin Mo,Xiaotao Su,Chao Qin
标识
DOI:10.1080/00207454.2020.1738429
摘要
Myasthenia gravis (MG) is a chronic autoimmune disorder resulting from autoantibodies against neuromuscular junction components. Research shows that this disease might be a primary bone marrow (BM) stem cell disorder. Autophagy protects the dynamics and homeostasis of the host cells by removing damaged mitochondria, protein aggregates and other intercellular materials. Dysfunctional autophagy is associated with autoimmune diseases. However, the autophagy activity and mechanisms in BM stem cell from MG patients remain largely uncharacterized. We evaluated the autophagy activity in bone marrow mononuclear cells (BM-MNCs) and the effects of autophagy on cell survival from patients with MG and healthy controls. Our results revealed that autophagy was significantly decreased in patients with MG before immunomodulation treatment compared with that in age-/sex-matched controls, and was lower in generalized MG (GMG) patients than in ocular MG (OMG) patients. Immunomodulatory treatment partially increased autophagy activity of BM-MNCs in MG patients and improved the symptoms. Furthermore, defective BM-MNCs differentiation, proliferation and apoptosis were observed due to dysfunctional autophagy. These findings suggest for the first time that BM-MNCs autophagy is impaired in patients with MG before immunomodulation therapy, and that autophagy is indispensable for the survival of BM-MNCs, implicating autophagy might be a potential pathogenic mechanism of MG and a novel therapeutic strategy for MG treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI