Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries

电解质 离子电导率 硫化物 电导率 阴极 材料科学 陶瓷 化学工程 锂(药物) 快离子导体 电化学窗口 无机化学 化学 复合材料 电极 冶金 物理化学 内分泌学 工程类 医学
作者
Lei Zhou,Muhammad Khurram Tufail,Le Yang,Niaz Ahmad,Renjie Chen,Wen Yang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:391: 123529-123529 被引量:41
标识
DOI:10.1016/j.cej.2019.123529
摘要

Low lithium ionic conductivity of the solid-state electrolyte and large interface resistance have hampered the application of all-solid-state lithium batteries. Although various methods have been proposed to address these challenge, a high-efficient method still needs for all-solid-state batteries. For the first time that Pyrite (FeS2) cathode is used as doping agent for Li7P3S11-type glass–ceramic electrolyte that could simultaneously improve the ionic conductivity and decrease the interfacial resistance between FeS2 cathode and electrolyte. A new series of Li7P3S11-type glass–ceramic electrolytes (x = 0, 0.5, 1, 2) are prepared by high energy ball milling method, and the 99.5(70Li2S–30P2S5)–0.5FeS2 glass–ceramic electrolyte shows a high lithium ionic conductivity, up to 2.22 mS cm−1 at room temperature. Solid-state NMR studies found that the presence of FeS2 doping could controllably adjust the crystallisation portions in glass–ceramic electrolyte, thus achieving the superior ionic conductivity. Moreover, the fabricated FeS2/99.5(70Li2S–30P2S5)–0.5FeS2/Li–Ln cell exhibited lower resistance. As a result, the novel all-solid-state lithium battery presented a higher initial capacity of 543 mAh g−1 at the current density of 0.03 mA cm−2 and also better cycling stability (462 mAh g−1 after 20 cycles) than the counterpart. The proposed cathode-doped electrolyte strategy not only figure out the key factors that determine the ionic conductivity of the glass–ceramic electrolyte and cathode/electrolyte interfacial resistance, and also provides an efficient route for design electrode configuration of high-performance solid-state lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助Rrr采纳,获得10
1秒前
新的心跳发布了新的文献求助10
1秒前
NN应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得30
3秒前
shouyu29应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得60
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研小白应助科研通管家采纳,获得40
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
活力绮兰应助科研通管家采纳,获得10
3秒前
感动秋完成签到 ,获得积分10
4秒前
4秒前
4秒前
gzsy完成签到 ,获得积分10
5秒前
5秒前
sexing发布了新的文献求助10
5秒前
丘比特应助koi采纳,获得10
5秒前
Sang完成签到 ,获得积分10
7秒前
7秒前
8秒前
金色年华完成签到,获得积分10
8秒前
丘比特应助daniel采纳,获得10
9秒前
我是老大应助szl采纳,获得10
10秒前
10秒前
赤邪完成签到,获得积分20
10秒前
小蘑菇应助复杂曼梅采纳,获得10
11秒前
12秒前
sexing完成签到,获得积分20
12秒前
你好发布了新的文献求助150
13秒前
13秒前
BareBear应助wfc采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808