Training set design for machine learning techniques applied to the approximation of computationally intensive first-principles kinetic models

蒙特卡罗方法 计算机科学 背景(考古学) 计算流体力学 动力学蒙特卡罗方法 数学优化 模拟 算法 机器学习 数学 机械 物理 生物 统计 古生物学
作者
Mauro Bracconi,Matteo Maestri
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:400: 125469-125469 被引量:36
标识
DOI:10.1016/j.cej.2020.125469
摘要

We propose a design procedure for the generation of the training set for Machine Learning algorithms with a specific focus on the approximation of computationally-intensive first-principles kinetic models in catalysis. The procedure is based on the function topology and behavior, by means of the calculation of the discrete gradient, and on the relative importance of the independent variables. We apply the proposed methodology to the tabulation and regression of mean-field and kinetic Monte Carlo models aiming at their coupling with reactor simulations. Our tests – in the context both of mean-field kinetics and kinetic Monte Carlo simulations – show that the procedure is able to design a dataset that requires between 60 and 80% fewer data points to achieve the same approximation accuracy than the one obtained with an evenly distributed grid. This strong reduction in the number of points results in a significant computational gain and a concomitant boost of the approximation efficiency. The Machine Learning algorithms trained with the results of the procedure are then included in both macroscopic reactor models and computational fluid dynamics (CFD) simulations. First, a Plug Flow Reactor is employed to carry out a direct comparison with the solution of the full first-principles kinetic model. The results show an excellent agreement within 0.2% between the models. Then, the CFD simulation of complex tridimensional geometry is carried out by using a tabulated kMC model for CO oxidation on Ruthenium oxide, thus providing a showcase of the capability of the approach in making possible the multiscale simulation of complex chemical reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luan完成签到,获得积分10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
LB应助科研通管家采纳,获得50
刚刚
浮游应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
泥昵哒耶完成签到,获得积分10
1秒前
大个应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
Hello应助十三采纳,获得10
3秒前
4秒前
难过曼冬完成签到 ,获得积分10
5秒前
小马甲应助wang5945采纳,获得10
5秒前
5秒前
PANYIAO完成签到,获得积分10
5秒前
5秒前
6秒前
Orange应助Luo采纳,获得10
6秒前
李嘉衡关注了科研通微信公众号
6秒前
情怀应助高贵小海豚采纳,获得10
6秒前
7秒前
赵李锋完成签到,获得积分10
7秒前
风趣的飞荷完成签到,获得积分10
7秒前
诱导效应完成签到,获得积分10
8秒前
haha111完成签到,获得积分10
8秒前
104zw完成签到,获得积分10
8秒前
8秒前
FashionBoy应助小小何采纳,获得10
8秒前
858278343发布了新的文献求助10
9秒前
9秒前
慕青应助大内泌探009采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321937
求助须知:如何正确求助?哪些是违规求助? 4463561
关于积分的说明 13890461
捐赠科研通 4354764
什么是DOI,文献DOI怎么找? 2392002
邀请新用户注册赠送积分活动 1385582
关于科研通互助平台的介绍 1355331