Training set design for machine learning techniques applied to the approximation of computationally intensive first-principles kinetic models

蒙特卡罗方法 计算机科学 背景(考古学) 计算流体力学 动力学蒙特卡罗方法 数学优化 模拟 算法 机器学习 数学 机械 物理 生物 统计 古生物学
作者
Mauro Bracconi,Matteo Maestri
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:400: 125469-125469 被引量:36
标识
DOI:10.1016/j.cej.2020.125469
摘要

We propose a design procedure for the generation of the training set for Machine Learning algorithms with a specific focus on the approximation of computationally-intensive first-principles kinetic models in catalysis. The procedure is based on the function topology and behavior, by means of the calculation of the discrete gradient, and on the relative importance of the independent variables. We apply the proposed methodology to the tabulation and regression of mean-field and kinetic Monte Carlo models aiming at their coupling with reactor simulations. Our tests – in the context both of mean-field kinetics and kinetic Monte Carlo simulations – show that the procedure is able to design a dataset that requires between 60 and 80% fewer data points to achieve the same approximation accuracy than the one obtained with an evenly distributed grid. This strong reduction in the number of points results in a significant computational gain and a concomitant boost of the approximation efficiency. The Machine Learning algorithms trained with the results of the procedure are then included in both macroscopic reactor models and computational fluid dynamics (CFD) simulations. First, a Plug Flow Reactor is employed to carry out a direct comparison with the solution of the full first-principles kinetic model. The results show an excellent agreement within 0.2% between the models. Then, the CFD simulation of complex tridimensional geometry is carried out by using a tabulated kMC model for CO oxidation on Ruthenium oxide, thus providing a showcase of the capability of the approach in making possible the multiscale simulation of complex chemical reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiujiudejian发布了新的文献求助10
刚刚
1秒前
1秒前
科研小狗发布了新的文献求助10
3秒前
Wmin完成签到,获得积分10
3秒前
5秒前
5秒前
香蕉觅云应助YQS采纳,获得10
6秒前
6秒前
kyle竣完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
风趣纸鹤完成签到,获得积分10
10秒前
张泽崇发布了新的文献求助10
10秒前
10秒前
11秒前
旅行完成签到,获得积分10
13秒前
wjx发布了新的文献求助10
13秒前
wjx发布了新的文献求助10
13秒前
wjx发布了新的文献求助10
13秒前
wjx发布了新的文献求助10
13秒前
wjx发布了新的文献求助10
13秒前
wjx发布了新的文献求助30
13秒前
wjx发布了新的文献求助20
13秒前
大个应助咚咚采纳,获得10
14秒前
kyle竣发布了新的文献求助10
14秒前
规格严格功夫到家完成签到,获得积分10
15秒前
小谭发布了新的文献求助10
16秒前
18秒前
wuhan驳回了传奇3应助
18秒前
李健的粉丝团团长应助wjx采纳,获得10
19秒前
充电宝应助wjx采纳,获得10
19秒前
嗯哼应助1781266采纳,获得20
20秒前
21秒前
啦啦啦发布了新的文献求助10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297381
求助须知:如何正确求助?哪些是违规求助? 2932792
关于积分的说明 8459595
捐赠科研通 2605614
什么是DOI,文献DOI怎么找? 1422455
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644729