Training set design for machine learning techniques applied to the approximation of computationally intensive first-principles kinetic models

蒙特卡罗方法 计算机科学 背景(考古学) 计算流体力学 动力学蒙特卡罗方法 数学优化 模拟 算法 机器学习 数学 机械 物理 生物 统计 古生物学
作者
Mauro Bracconi,Matteo Maestri
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:400: 125469-125469 被引量:36
标识
DOI:10.1016/j.cej.2020.125469
摘要

We propose a design procedure for the generation of the training set for Machine Learning algorithms with a specific focus on the approximation of computationally-intensive first-principles kinetic models in catalysis. The procedure is based on the function topology and behavior, by means of the calculation of the discrete gradient, and on the relative importance of the independent variables. We apply the proposed methodology to the tabulation and regression of mean-field and kinetic Monte Carlo models aiming at their coupling with reactor simulations. Our tests – in the context both of mean-field kinetics and kinetic Monte Carlo simulations – show that the procedure is able to design a dataset that requires between 60 and 80% fewer data points to achieve the same approximation accuracy than the one obtained with an evenly distributed grid. This strong reduction in the number of points results in a significant computational gain and a concomitant boost of the approximation efficiency. The Machine Learning algorithms trained with the results of the procedure are then included in both macroscopic reactor models and computational fluid dynamics (CFD) simulations. First, a Plug Flow Reactor is employed to carry out a direct comparison with the solution of the full first-principles kinetic model. The results show an excellent agreement within 0.2% between the models. Then, the CFD simulation of complex tridimensional geometry is carried out by using a tabulated kMC model for CO oxidation on Ruthenium oxide, thus providing a showcase of the capability of the approach in making possible the multiscale simulation of complex chemical reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的曼梅完成签到,获得积分10
刚刚
yuan完成签到,获得积分10
刚刚
1秒前
Lucas应助香蕉招牌采纳,获得10
1秒前
1秒前
z7完成签到,获得积分10
1秒前
慕青应助小胡采纳,获得10
2秒前
hahaha完成签到,获得积分20
2秒前
CodeCraft应助余裕采纳,获得10
2秒前
许三多完成签到,获得积分10
2秒前
3秒前
靓丽紫真发布了新的文献求助10
3秒前
云云纵声发布了新的文献求助10
3秒前
4秒前
浮游应助大知闲闲采纳,获得10
4秒前
qinswzaiyu完成签到,获得积分10
4秒前
木樨完成签到,获得积分10
4秒前
执着凡梦完成签到,获得积分10
4秒前
ShiRz发布了新的文献求助10
5秒前
bolunxier发布了新的文献求助10
5秒前
852应助cetomacrogol采纳,获得10
5秒前
陈年旧事发布了新的文献求助10
5秒前
大个应助星川采纳,获得10
5秒前
6秒前
6秒前
6秒前
小骨发布了新的文献求助10
7秒前
TAKI发布了新的文献求助10
7秒前
7秒前
7秒前
文艺访曼发布了新的文献求助10
7秒前
8秒前
学术新星完成签到,获得积分10
8秒前
wyp完成签到,获得积分20
8秒前
9秒前
拼搏的潘子完成签到,获得积分10
9秒前
科研通AI2S应助ShiRz采纳,获得10
9秒前
六金完成签到 ,获得积分10
9秒前
杀手小鸡完成签到,获得积分10
9秒前
多米发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5166574
求助须知:如何正确求助?哪些是违规求助? 4358543
关于积分的说明 13570767
捐赠科研通 4205109
什么是DOI,文献DOI怎么找? 2306149
邀请新用户注册赠送积分活动 1305922
关于科研通互助平台的介绍 1252367