Training set design for machine learning techniques applied to the approximation of computationally intensive first-principles kinetic models

蒙特卡罗方法 计算机科学 背景(考古学) 计算流体力学 动力学蒙特卡罗方法 数学优化 模拟 算法 机器学习 数学 机械 物理 生物 统计 古生物学
作者
Mauro Bracconi,Matteo Maestri
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:400: 125469-125469 被引量:36
标识
DOI:10.1016/j.cej.2020.125469
摘要

We propose a design procedure for the generation of the training set for Machine Learning algorithms with a specific focus on the approximation of computationally-intensive first-principles kinetic models in catalysis. The procedure is based on the function topology and behavior, by means of the calculation of the discrete gradient, and on the relative importance of the independent variables. We apply the proposed methodology to the tabulation and regression of mean-field and kinetic Monte Carlo models aiming at their coupling with reactor simulations. Our tests – in the context both of mean-field kinetics and kinetic Monte Carlo simulations – show that the procedure is able to design a dataset that requires between 60 and 80% fewer data points to achieve the same approximation accuracy than the one obtained with an evenly distributed grid. This strong reduction in the number of points results in a significant computational gain and a concomitant boost of the approximation efficiency. The Machine Learning algorithms trained with the results of the procedure are then included in both macroscopic reactor models and computational fluid dynamics (CFD) simulations. First, a Plug Flow Reactor is employed to carry out a direct comparison with the solution of the full first-principles kinetic model. The results show an excellent agreement within 0.2% between the models. Then, the CFD simulation of complex tridimensional geometry is carried out by using a tabulated kMC model for CO oxidation on Ruthenium oxide, thus providing a showcase of the capability of the approach in making possible the multiscale simulation of complex chemical reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助星光采纳,获得10
1秒前
1秒前
1秒前
1秒前
李健应助铁观音采纳,获得10
1秒前
lin发布了新的文献求助20
2秒前
椰子完成签到,获得积分10
2秒前
Master完成签到,获得积分10
3秒前
钮黎昕发布了新的文献求助10
3秒前
4秒前
NW发布了新的文献求助10
4秒前
桐桐应助hr采纳,获得10
4秒前
田様应助Alan采纳,获得10
4秒前
5秒前
NMSL完成签到,获得积分20
5秒前
Cmax_发布了新的文献求助30
5秒前
小帅发布了新的文献求助10
5秒前
wendy发布了新的文献求助10
5秒前
5秒前
5秒前
李爽完成签到 ,获得积分10
6秒前
微笑友容发布了新的文献求助10
6秒前
7秒前
乐观的海发布了新的文献求助10
7秒前
我先睡了发布了新的文献求助10
7秒前
Salt发布了新的文献求助10
7秒前
沁814发布了新的文献求助10
7秒前
大个应助牵绊采纳,获得10
8秒前
wlscj应助琪凯定理采纳,获得20
8秒前
Alex应助夜神月采纳,获得20
9秒前
星辰大海应助tttt采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
不倦应助拉长的念露采纳,获得10
11秒前
CC66发布了新的文献求助10
11秒前
cijing发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879