Training set design for machine learning techniques applied to the approximation of computationally intensive first-principles kinetic models

蒙特卡罗方法 计算机科学 背景(考古学) 计算流体力学 动力学蒙特卡罗方法 数学优化 模拟 算法 机器学习 数学 机械 物理 生物 统计 古生物学
作者
Mauro Bracconi,Matteo Maestri
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:400: 125469-125469 被引量:36
标识
DOI:10.1016/j.cej.2020.125469
摘要

We propose a design procedure for the generation of the training set for Machine Learning algorithms with a specific focus on the approximation of computationally-intensive first-principles kinetic models in catalysis. The procedure is based on the function topology and behavior, by means of the calculation of the discrete gradient, and on the relative importance of the independent variables. We apply the proposed methodology to the tabulation and regression of mean-field and kinetic Monte Carlo models aiming at their coupling with reactor simulations. Our tests – in the context both of mean-field kinetics and kinetic Monte Carlo simulations – show that the procedure is able to design a dataset that requires between 60 and 80% fewer data points to achieve the same approximation accuracy than the one obtained with an evenly distributed grid. This strong reduction in the number of points results in a significant computational gain and a concomitant boost of the approximation efficiency. The Machine Learning algorithms trained with the results of the procedure are then included in both macroscopic reactor models and computational fluid dynamics (CFD) simulations. First, a Plug Flow Reactor is employed to carry out a direct comparison with the solution of the full first-principles kinetic model. The results show an excellent agreement within 0.2% between the models. Then, the CFD simulation of complex tridimensional geometry is carried out by using a tabulated kMC model for CO oxidation on Ruthenium oxide, thus providing a showcase of the capability of the approach in making possible the multiscale simulation of complex chemical reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Curry完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
在水一方应助RATHER采纳,获得10
刚刚
YZHSCI888发布了新的文献求助10
刚刚
1秒前
CipherSage应助大写的笨采纳,获得10
1秒前
dzjin发布了新的文献求助10
1秒前
ww发布了新的文献求助10
2秒前
zzzzZ12138发布了新的文献求助30
3秒前
3秒前
悦耳伊发布了新的文献求助10
4秒前
4秒前
memedaaaah发布了新的文献求助10
4秒前
张杰发布了新的文献求助10
4秒前
4秒前
5秒前
一篇吃不饱完成签到,获得积分10
5秒前
共享精神应助摸鱼大王采纳,获得10
6秒前
6秒前
6秒前
6秒前
今后应助灰灰成长中采纳,获得10
6秒前
浮游应助活泼啤酒采纳,获得10
7秒前
飞飞鱼完成签到,获得积分10
7秒前
shirly发布了新的文献求助30
7秒前
FashionBoy应助坦率的夜玉采纳,获得10
7秒前
无极微光应助庄严采纳,获得20
8秒前
zgf完成签到 ,获得积分10
8秒前
星辰大海应助潆星采纳,获得10
8秒前
科研小趴菜完成签到,获得积分10
8秒前
满意的砖头完成签到,获得积分10
8秒前
Jasper应助悦耳的听双采纳,获得10
9秒前
10秒前
10秒前
10秒前
科研通AI5应助清爽的以松采纳,获得30
10秒前
11秒前
11秒前
火星上不尤完成签到,获得积分10
11秒前
redamancy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701