Training set design for machine learning techniques applied to the approximation of computationally intensive first-principles kinetic models

蒙特卡罗方法 计算机科学 背景(考古学) 计算流体力学 动力学蒙特卡罗方法 数学优化 模拟 算法 机器学习 数学 机械 物理 生物 统计 古生物学
作者
Mauro Bracconi,Matteo Maestri
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:400: 125469-125469 被引量:36
标识
DOI:10.1016/j.cej.2020.125469
摘要

We propose a design procedure for the generation of the training set for Machine Learning algorithms with a specific focus on the approximation of computationally-intensive first-principles kinetic models in catalysis. The procedure is based on the function topology and behavior, by means of the calculation of the discrete gradient, and on the relative importance of the independent variables. We apply the proposed methodology to the tabulation and regression of mean-field and kinetic Monte Carlo models aiming at their coupling with reactor simulations. Our tests – in the context both of mean-field kinetics and kinetic Monte Carlo simulations – show that the procedure is able to design a dataset that requires between 60 and 80% fewer data points to achieve the same approximation accuracy than the one obtained with an evenly distributed grid. This strong reduction in the number of points results in a significant computational gain and a concomitant boost of the approximation efficiency. The Machine Learning algorithms trained with the results of the procedure are then included in both macroscopic reactor models and computational fluid dynamics (CFD) simulations. First, a Plug Flow Reactor is employed to carry out a direct comparison with the solution of the full first-principles kinetic model. The results show an excellent agreement within 0.2% between the models. Then, the CFD simulation of complex tridimensional geometry is carried out by using a tabulated kMC model for CO oxidation on Ruthenium oxide, thus providing a showcase of the capability of the approach in making possible the multiscale simulation of complex chemical reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
自由的雪一完成签到,获得积分10
刚刚
刚刚
1秒前
古德曼发布了新的文献求助50
1秒前
wmn发布了新的文献求助10
3秒前
郝好月完成签到,获得积分10
6秒前
123发布了新的文献求助10
8秒前
俏皮的老城完成签到 ,获得积分10
8秒前
spongebob发布了新的文献求助30
9秒前
无花果应助amin采纳,获得10
11秒前
Ava应助留胡子的藏鸟采纳,获得10
12秒前
贪玩的谷芹完成签到 ,获得积分10
13秒前
开心的金鱼完成签到,获得积分10
13秒前
liyb完成签到,获得积分10
14秒前
15秒前
古德曼完成签到,获得积分10
15秒前
desperado完成签到 ,获得积分10
15秒前
愉快之槐完成签到,获得积分10
15秒前
wmn完成签到,获得积分10
18秒前
NexusExplorer应助yzWang采纳,获得10
20秒前
21秒前
li完成签到,获得积分10
23秒前
火柴完成签到,获得积分10
26秒前
Running完成签到 ,获得积分10
28秒前
28秒前
amin发布了新的文献求助10
28秒前
30秒前
tramp应助汕头凯奇采纳,获得10
30秒前
31秒前
32秒前
无花果应助文艺易蓉采纳,获得10
33秒前
滕皓轩发布了新的文献求助30
34秒前
emmm发布了新的文献求助10
36秒前
37秒前
demon王完成签到,获得积分10
37秒前
yydragen应助小蜻蜓采纳,获得30
38秒前
38秒前
sunnyfish007发布了新的文献求助10
38秒前
DPH完成签到 ,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958068
求助须知:如何正确求助?哪些是违规求助? 3504219
关于积分的说明 11117555
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788351
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511