已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Training set design for machine learning techniques applied to the approximation of computationally intensive first-principles kinetic models

蒙特卡罗方法 计算机科学 背景(考古学) 计算流体力学 动力学蒙特卡罗方法 数学优化 模拟 算法 机器学习 数学 机械 物理 生物 统计 古生物学
作者
Mauro Bracconi,Matteo Maestri
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:400: 125469-125469 被引量:36
标识
DOI:10.1016/j.cej.2020.125469
摘要

We propose a design procedure for the generation of the training set for Machine Learning algorithms with a specific focus on the approximation of computationally-intensive first-principles kinetic models in catalysis. The procedure is based on the function topology and behavior, by means of the calculation of the discrete gradient, and on the relative importance of the independent variables. We apply the proposed methodology to the tabulation and regression of mean-field and kinetic Monte Carlo models aiming at their coupling with reactor simulations. Our tests – in the context both of mean-field kinetics and kinetic Monte Carlo simulations – show that the procedure is able to design a dataset that requires between 60 and 80% fewer data points to achieve the same approximation accuracy than the one obtained with an evenly distributed grid. This strong reduction in the number of points results in a significant computational gain and a concomitant boost of the approximation efficiency. The Machine Learning algorithms trained with the results of the procedure are then included in both macroscopic reactor models and computational fluid dynamics (CFD) simulations. First, a Plug Flow Reactor is employed to carry out a direct comparison with the solution of the full first-principles kinetic model. The results show an excellent agreement within 0.2% between the models. Then, the CFD simulation of complex tridimensional geometry is carried out by using a tabulated kMC model for CO oxidation on Ruthenium oxide, thus providing a showcase of the capability of the approach in making possible the multiscale simulation of complex chemical reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盒饭飞仙完成签到 ,获得积分10
刚刚
小小孟同学完成签到,获得积分20
1秒前
端庄的曼云关注了科研通微信公众号
2秒前
LeuinPonsgi发布了新的文献求助10
4秒前
AAA应助夏爽2023采纳,获得50
4秒前
4秒前
zhangsenbing发布了新的文献求助10
4秒前
JamesPei应助变化是永恒的采纳,获得10
5秒前
Mingway发布了新的文献求助10
8秒前
我是老大应助sci采纳,获得10
9秒前
LTT发布了新的文献求助10
11秒前
天真台灯发布了新的文献求助20
13秒前
柠九完成签到,获得积分10
13秒前
宋芽芽u完成签到 ,获得积分10
13秒前
LeuinPonsgi完成签到,获得积分10
13秒前
幽默夜阑完成签到,获得积分10
15秒前
RCRCRC1995完成签到 ,获得积分20
19秒前
guo完成签到 ,获得积分10
20秒前
Mingway完成签到,获得积分10
21秒前
21秒前
zyz完成签到 ,获得积分10
24秒前
朱诗佳发布了新的文献求助10
26秒前
28秒前
柠九发布了新的文献求助10
28秒前
隐形曼青应助RR采纳,获得10
29秒前
29秒前
31秒前
科研小白完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
半_发布了新的文献求助10
33秒前
番茄酱发布了新的文献求助10
35秒前
zyx发布了新的文献求助10
36秒前
朴素曼岚关注了科研通微信公众号
38秒前
Akim应助zhangsenbing采纳,获得20
40秒前
42秒前
风中小刺猬完成签到,获得积分10
42秒前
44秒前
情怀应助番茄酱采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396