催化作用
材料科学
化学工程
纳米技术
多孔性
碳纤维
化学
生物化学
复合数
工程类
复合材料
作者
Lu Guan,Han Hu,Linqing Li,Yuanyuan Pan,Yifan Zhu,Qiang Li,Hailing Guo,Kai Wang,Yunchun Huang,Mengdi Zhang,Yingchun Yan,Zhongtao Li,Xiaoling Teng,Junwei Yang,Jiazhi Xiao,Yunlong Zhang,Xiaoshan Wang,Mingbo Wu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2020-04-30
卷期号:14 (5): 6222-6231
被引量:100
标识
DOI:10.1021/acsnano.0c02294
摘要
Despite their promising potential, the real performance of lithium-sulfur batteries is still heavily impeded by the notorious shuttle behavior and sluggish conversion of polysulfides. Complex structures with multiple components have been widely employed to address these issues by virtue of their strong polarity and abundant surface catalytic sites. Nevertheless, the tedious constructing procedures and high cost of these materials make the exploration of alternative high-performance sulfur hosts increasingly important. Herein, we report an intrinsic defect-rich hierarchically porous carbon architecture with strong affinity and high conversion activity toward polysulfides even at high sulfur loading. Such an architecture can be prepared using a widely available nitrogen-containing precursor through a simple yet effective in situ templating strategy and subsequent nitrogen removal procedure. The hierarchical structure secures a high sulfur loading, while the intrinsic defects strongly anchor the active species and boost their chemical conversion because of the strong polarity and accelerated electron transfer at the defective sites. As a result, the lithium-sulfur batteries with this carbon material as the sulfur host deliver a high specific capacity of 1182 mAh g–1 at 0.5 C, excellent cycling stability with a capacity retention of 70% after 500 cycles, and outstanding rate capability, one of the best results among pure carbon hosts. The strategy suggested here may rekindle interest in exploring the potential of pure carbon materials for lithium-sulfur batteries as well as other energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI