自愈水凝胶
吸附
材料科学
水溶液中的金属离子
乙二胺四乙酸
化学工程
聚乙烯亚胺
金属
螯合作用
核化学
高分子化学
有机化学
化学
冶金
工程类
基因
生物化学
转染
作者
Sudipta Panja,Samuel Hanson,Chun Wang
标识
DOI:10.1021/acsami.0c03689
摘要
Water pollution by heavy metal ions is a critical threat to public health. To remove the heavy metal pollutants from large waterbodies, we have synthesized a biocompatible, cost-effective, metal ion non-specific, and ethylenediaminetetraacetic acid (EDTA)-inspired polydentate hydrogel with exceptionally high adsorption capacity and reusability. The hydrogel was synthesized by the transamidation reaction between hydrolyzed polyacrylamide and branched polyethylenimine (BPEI). The mechanical strength of the synthesized hydrogel displayed an increasing trend with the wt % of the cross-linker (BPEI) and achieved a maximum storage modulus (Gmax') of 1093 Pa. Scanning electron microscopy revealed a porous network structure of the hydrogel (pore size: 30-70 μm), resulting in a very high swelling ratio of 5800%. The porous hydrogel manifested the maximum adsorption capacity of 482.2 mg/g when adsorbing from a mixture of metal ions (Cr3+, Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+), higher than any EDTA-grafted material known to date. The high adsorption capacity of the hydrogel was attributed to the existence of numerous EDTA-mimicking coordinating functional groups, as confirmed by X-ray photoelectron spectroscopy. In addition, the hydrogel showed the self-healing property and preserved more than 85% adsorption efficiency even after five cycles of reuse. Furthermore, the hydrogels showed no or moderate toxicity toward mammalian cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI