已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

IAUnet: Global Context-Aware Feature Learning for Person Reidentification

计算机科学 杠杆(统计) 特征学习 空间语境意识 卷积神经网络 块(置换群论) 分类 人工智能 背景(考古学) 特征(语言学) 模式识别(心理学) 哲学 古生物学 生物 语言学 数学 几何学
作者
Ruibing Hou,Bingpeng Ma,Hong Chang,Xinqian Gu,Shiguang Shan,Xilin Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 4460-4474 被引量:32
标识
DOI:10.1109/tnnls.2020.3017939
摘要

Person reidentification (reID) by convolutional neural network (CNN)-based networks has achieved favorable performance in recent years. However, most of existing CNN-based methods do not take full advantage of spatial-temporal context modeling. In fact, the global spatial-temporal context can greatly clarify local distractions to enhance the target feature representation. To comprehensively leverage the spatial-temporal context information, in this work, we present a novel block, interaction-aggregation-update (IAU), for high-performance person reID. First, the spatial-temporal IAU (STIAU) module is introduced. STIAU jointly incorporates two types of contextual interactions into a CNN framework for target feature learning. Here, the spatial interactions learn to compute the contextual dependencies between different body parts of a single frame, while the temporal interactions are used to capture the contextual dependencies between the same body parts across all frames. Furthermore, a channel IAU (CIAU) module is designed to model the semantic contextual interactions between channel features to enhance the feature representation, especially for small-scale visual cues and body parts. Therefore, the IAU block enables the feature to incorporate the globally spatial, temporal, and channel context. It is lightweight, end-to-end trainable, and can be easily plugged into existing CNNs to form IAUnet. The experiments show that IAUnet performs favorably against state of the art on both image and video reID tasks and achieves compelling results on a general object categorization task. The source code is available at https://github.com/blue-blue272/ImgReID-IAnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李爱国应助冷静的煎饼采纳,获得10
3秒前
4秒前
8秒前
8秒前
星辰大海应助lizeyu采纳,获得10
8秒前
喜欢发布了新的文献求助10
8秒前
周凡淇发布了新的文献求助10
10秒前
12秒前
北冥鱼完成签到,获得积分10
16秒前
烟花应助黄橙子采纳,获得10
17秒前
18秒前
沐阳发布了新的文献求助10
18秒前
20秒前
20秒前
小林完成签到,获得积分20
21秒前
lizeyu发布了新的文献求助10
24秒前
24秒前
可爱的函函应助命运采纳,获得20
24秒前
喜悦的凉面完成签到,获得积分10
27秒前
27秒前
27秒前
30秒前
学术废物完成签到 ,获得积分10
30秒前
31秒前
31秒前
32秒前
周凡淇发布了新的文献求助10
32秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
pgjwl应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
黄橙子发布了新的文献求助10
33秒前
34秒前
研友_VZG7GZ应助YUE采纳,获得10
36秒前
38秒前
wanci应助轻微采纳,获得10
40秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125744
求助须知:如何正确求助?哪些是违规求助? 2776037
关于积分的说明 7728973
捐赠科研通 2431507
什么是DOI,文献DOI怎么找? 1292095
科研通“疑难数据库(出版商)”最低求助积分说明 622375
版权声明 600380