IAUnet: Global Context-Aware Feature Learning for Person Reidentification

计算机科学 杠杆(统计) 特征学习 空间语境意识 卷积神经网络 块(置换群论) 分类 人工智能 背景(考古学) 特征(语言学) 模式识别(心理学) 哲学 古生物学 生物 语言学 数学 几何学
作者
Ruibing Hou,Bingpeng Ma,Hong Chang,Xinqian Gu,Shiguang Shan,Xilin Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 4460-4474 被引量:32
标识
DOI:10.1109/tnnls.2020.3017939
摘要

Person reidentification (reID) by convolutional neural network (CNN)-based networks has achieved favorable performance in recent years. However, most of existing CNN-based methods do not take full advantage of spatial-temporal context modeling. In fact, the global spatial-temporal context can greatly clarify local distractions to enhance the target feature representation. To comprehensively leverage the spatial-temporal context information, in this work, we present a novel block, interaction-aggregation-update (IAU), for high-performance person reID. First, the spatial-temporal IAU (STIAU) module is introduced. STIAU jointly incorporates two types of contextual interactions into a CNN framework for target feature learning. Here, the spatial interactions learn to compute the contextual dependencies between different body parts of a single frame, while the temporal interactions are used to capture the contextual dependencies between the same body parts across all frames. Furthermore, a channel IAU (CIAU) module is designed to model the semantic contextual interactions between channel features to enhance the feature representation, especially for small-scale visual cues and body parts. Therefore, the IAU block enables the feature to incorporate the globally spatial, temporal, and channel context. It is lightweight, end-to-end trainable, and can be easily plugged into existing CNNs to form IAUnet. The experiments show that IAUnet performs favorably against state of the art on both image and video reID tasks and achieves compelling results on a general object categorization task. The source code is available at https://github.com/blue-blue272/ImgReID-IAnet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧阳慕山完成签到,获得积分10
刚刚
1秒前
酷波er应助念安采纳,获得10
1秒前
D&L发布了新的文献求助10
1秒前
yang发布了新的文献求助10
2秒前
虚心的依凝完成签到,获得积分10
2秒前
bt4567发布了新的文献求助10
2秒前
友好元蝶发布了新的文献求助10
3秒前
Ranmaru发布了新的文献求助30
3秒前
4秒前
火星上的书萱完成签到,获得积分20
4秒前
华仔应助张再禹采纳,获得10
4秒前
4秒前
4秒前
5秒前
7秒前
星辰大海应助缥缈纸飞机采纳,获得10
7秒前
8秒前
9秒前
9秒前
zhou发布了新的文献求助10
9秒前
CodeCraft应助陈ZQ采纳,获得10
9秒前
10秒前
今后应助陶醉凝丝采纳,获得10
10秒前
情怀应助GG采纳,获得10
10秒前
WEN发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
許1111发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
拉长的紫安完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389