Development of an efficient global optimization method based on adaptive infilling for structure optimization

工程设计过程 拓扑优化 多目标优化 替代模型 趋同(经济学) 水准点(测量)
作者
Li Chunna,Fang Hai,Gong Chun-lin
出处
期刊:Structural and Multidisciplinary Optimization [Springer Nature]
卷期号:62 (6): 3383-3412 被引量:9
标识
DOI:10.1007/s00158-020-02716-y
摘要

For problems with expensive black-box functions, the surrogate-based optimization (SBO) is more efficient than the conventional evolutionary algorithms in searching for the global optimum. However, the SBO converges much slower and shows imperfection in local exploitation, along with the increase of the scale of the design space, the number of the design variables, and the nonlinearity of the problems. This paper proposes an efficient global optimization method, which integrates an adaptive infilling by fuzzy clustering algorithm into an SBO process based on Kriging model. In each refinement cycle, a Kriging model is first built using samples in the current design space; then a fuzzy clustering algorithm is adopted to partition the design space into several subspaces considering inner features of the samples. Thus, new infilling samples are selected within each subspace by maximizing the expected improvement of the objective function and minimizing the surrogate prediction. Thereafter, the design space is updated by merging those subspaces, resulting in a diminishing design space during refinement. Furthermore, the parameters for the adaptive infilling procedure are studied to recommend reasonable settings for running optimizations. The proposed method is finally validated and assessed by eight analytical tests with bound constraints, and then employed in a beam optimization problem and a rocket interstage optimization problem under nonlinear constraints. The results indicate that the adaptive infilling behaves quite well in space exploration due to sampling in clustered subspaces, and possesses good performance in local exploitation as well because of space reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zurlliant发布了新的文献求助10
1秒前
Betty发布了新的文献求助10
1秒前
1秒前
喜悦语堂完成签到,获得积分10
1秒前
2秒前
guo完成签到,获得积分0
2秒前
在水一方应助龙思甜采纳,获得10
3秒前
xu完成签到 ,获得积分10
3秒前
王俊完成签到,获得积分10
5秒前
约翰森尼亚大使完成签到,获得积分10
6秒前
吡咯爱成环应助ixueyi采纳,获得10
6秒前
Betty完成签到,获得积分20
9秒前
爱博完成签到,获得积分10
10秒前
谦让成协完成签到,获得积分10
12秒前
12秒前
安德森先生完成签到,获得积分10
12秒前
13秒前
ky发布了新的文献求助10
14秒前
konglong完成签到,获得积分10
15秒前
浪里白条完成签到,获得积分10
16秒前
劲秉应助好好好1234采纳,获得10
17秒前
18秒前
隐形曼青应助asdfqwer采纳,获得10
18秒前
19秒前
konglong发布了新的文献求助10
19秒前
打打应助高等等采纳,获得10
19秒前
19秒前
overmind完成签到,获得积分10
19秒前
红房子关注了科研通微信公众号
20秒前
ky完成签到,获得积分20
21秒前
22秒前
深情安青应助柯南采纳,获得10
22秒前
龙思甜发布了新的文献求助10
22秒前
23秒前
ling应助鸭子兔采纳,获得10
23秒前
忐忑的黑猫应助asdfqwer采纳,获得10
23秒前
烟花应助liaomr采纳,获得10
24秒前
25秒前
脑袋瓜发布了新的文献求助10
25秒前
小马甲应助聪明寄容采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465403
求助须知:如何正确求助?哪些是违规求助? 3058562
关于积分的说明 9062014
捐赠科研通 2748872
什么是DOI,文献DOI怎么找? 1508182
科研通“疑难数据库(出版商)”最低求助积分说明 696856
邀请新用户注册赠送积分活动 696483