已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of an efficient global optimization method based on adaptive infilling for structure optimization

工程设计过程 拓扑优化 多目标优化 替代模型 趋同(经济学) 水准点(测量)
作者
Li Chunna,Fang Hai,Gong Chun-lin
出处
期刊:Structural and Multidisciplinary Optimization [Springer Science+Business Media]
卷期号:62 (6): 3383-3412 被引量:9
标识
DOI:10.1007/s00158-020-02716-y
摘要

For problems with expensive black-box functions, the surrogate-based optimization (SBO) is more efficient than the conventional evolutionary algorithms in searching for the global optimum. However, the SBO converges much slower and shows imperfection in local exploitation, along with the increase of the scale of the design space, the number of the design variables, and the nonlinearity of the problems. This paper proposes an efficient global optimization method, which integrates an adaptive infilling by fuzzy clustering algorithm into an SBO process based on Kriging model. In each refinement cycle, a Kriging model is first built using samples in the current design space; then a fuzzy clustering algorithm is adopted to partition the design space into several subspaces considering inner features of the samples. Thus, new infilling samples are selected within each subspace by maximizing the expected improvement of the objective function and minimizing the surrogate prediction. Thereafter, the design space is updated by merging those subspaces, resulting in a diminishing design space during refinement. Furthermore, the parameters for the adaptive infilling procedure are studied to recommend reasonable settings for running optimizations. The proposed method is finally validated and assessed by eight analytical tests with bound constraints, and then employed in a beam optimization problem and a rocket interstage optimization problem under nonlinear constraints. The results indicate that the adaptive infilling behaves quite well in space exploration due to sampling in clustered subspaces, and possesses good performance in local exploitation as well because of space reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助狂野忆文采纳,获得10
5秒前
SYLH应助狂野忆文采纳,获得10
5秒前
SYLH应助狂野忆文采纳,获得10
5秒前
SYLH应助狂野忆文采纳,获得10
5秒前
SYLH应助狂野忆文采纳,获得10
5秒前
科研通AI2S应助狂野忆文采纳,获得10
5秒前
扎心应助狂野忆文采纳,获得10
5秒前
扎心应助狂野忆文采纳,获得10
6秒前
科研通AI2S应助狂野忆文采纳,获得10
6秒前
充电宝应助狂野忆文采纳,获得10
6秒前
战战兢兢完成签到 ,获得积分10
14秒前
小宇完成签到 ,获得积分10
20秒前
华仔应助幽悠梦儿采纳,获得10
22秒前
jnoker完成签到 ,获得积分10
23秒前
要好好看文献完成签到,获得积分10
26秒前
RSU完成签到,获得积分10
28秒前
Owen应助阿尼采纳,获得10
28秒前
666666666666666完成签到 ,获得积分10
29秒前
李健的小迷弟应助六沉采纳,获得10
30秒前
36秒前
Nakacoke77完成签到,获得积分10
36秒前
yingying完成签到 ,获得积分10
37秒前
37秒前
38秒前
阿尼发布了新的文献求助10
41秒前
屠俊豪发布了新的文献求助10
45秒前
Narcissus完成签到,获得积分10
45秒前
47秒前
三三完成签到 ,获得积分10
49秒前
51秒前
屠俊豪完成签到,获得积分10
51秒前
六沉发布了新的文献求助10
53秒前
Owen应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
阿尼完成签到,获得积分10
1分钟前
六沉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
minnie完成签到 ,获得积分10
1分钟前
akun完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176