软骨细胞
衰老
受体
骨关节炎
医学
内皮素1
软骨
下调和上调
内科学
化学
内分泌学
细胞生物学
内皮素受体
生物
病理
解剖
生物化学
基因
替代医学
作者
Man Ting Au,Zehuan Liu,Liang Rong,Yong‐Ping Zheng,Chunyi Wen
标识
DOI:10.1016/j.joca.2020.08.006
摘要
This study aimed to investigate the role of endothelin-1 (ET-1), originally known as the potent vasoconstrictor, and its receptors in chondrocyte senescence and osteoarthritis (OA) development.Temporal changes of ET-1 and its receptors with OA development were characterized in a posttraumatic OA (PTOA) mouse model at time zero, 1-month and 4-month after surgical induction via destabilization of medial meniscus (DMM). A transgenic ET-1 overexpression (TET-1) mouse model was deployed to assess the impact of upregulated ET-1 on chondrocyte senescence and cartilage degradation. Effects of endothelin receptor blockade on chondrocyte senescence and OA development were further examined both in vitro and in vivo.Local expression of ET-1 in subchondral bone and synovium upregulated after DMM with an increase of plasma ET-1 level from 3.18 ± 0.21 pg/ml at time zero to 6.47 ± 0.34 pg/ml at 4-month post-surgery. Meanwhile, endothelin type B receptor (ETBR) (53.31 ± 2.42% to 83.8 ± 2.65%) and p16INK4a (10.91 ± 1.07% to 28.2 ± 1.0%) positve chondrocytes accumulated in articular cartilage since 1-month prior to cartilage loss at 4-month post-surgery. Overexpressed ET-1 promoted p16INK4a-positive senescent chondrocytes accumulation and cartilage degradation in TET-1 mice. Selective blockade of ETBR, but not ETAR, lowered the expression of p16INK4a in ET-1 or H2O2-induced chondrocyte senescence model, and mitigated the severity of murine PTOA. Intriguingly, reactive oxygen species (ROS) scavenger, Vitamin C, could rescue ET-1-induced chondrocyte senescence in vitro associated with restoration of mitochondrial dynamics.ET-1 could induce chondrocytes senescence and cartilage damages via ETBR in PTOA.
科研通智能强力驱动
Strongly Powered by AbleSci AI