亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Bayesian approach to toxicological testing

背景(考古学) 考试(生物学) 预测能力 功率(物理) 统计能力 贝叶斯概率 可靠性工程 预测性试验 计算机科学 统计 医学 人工智能 数学 工程类 内科学 基因检测 古生物学 哲学 物理 认识论 生物 量子力学
作者
James C. Felli,Derek J. Leishman
出处
期刊:Journal of Pharmacological and Toxicological Methods [Elsevier BV]
卷期号:105: 106898-106898 被引量:4
标识
DOI:10.1016/j.vascn.2020.106898
摘要

Testing for toxicities is an important activity in drug development. In an ideal world the tests applied would be definitive. In reality this is seldom the case. There are two types of power associated with a test. A test's discriminatory power is characterized by its sensitivity and specificity and tells the investigator the probability of obtaining a test positive in the presence (sensitivity) or a test negative in the absence (specificity) of the toxicity. A test's discriminatory power is an attribute of the test itself. The investigator is, however, more interested in a test's predictive power, which is the probability that the toxicity is present or absent in a novel molecule given the test result. A test's predictive power is a consequence of the test's discriminatory power and the context of its application. Unlike its discriminatory power, the predictive power of a test is not ‘fixed’ and varies with testing context. This means that tests and test context must be taken together to enable an investigator to achieve their desired predictive power. Our intent is to illustrate a broadly applicable approach to testing schemes designed to maximize a test's positive or negative predictive power. Rather than hypothetical tests and toxicities, we use as examples tests available for the prediction of a substance's liability to cause the cardiac arrhythmia torsade de pointes. Owing to intense focus over the last two decades, the discriminatory powers of a number of tests for predicting a torsade de pointes liability are publicly available. Having randomly chosen an initial test (random although plausible as an early screening assessment), the inter-relationship between the prevalence of torsadogenic liability and the discriminatory power of potential follow-on tests were explored in a probability framework, based on Bayes Theorem, to show how testing schemes could be developed based on odds and likelihood ratios. Uncertainty around the prevalence of torsade liability and the discriminatory power of a test were addressed by varying these values and examining their impact on the test's predictive power. Overall, the analysis demonstrates that tests can be strategically combined to reach a desired level of predictive power. This is generally more easily achieved for negative predictive power given a low prevalence of the toxicity under scrutiny. For this work, we used a base prevalence of 10% for a substance to carry a tordsadogenic liability. Given uncertainty around a test's discriminatory power, a probabilistic rather than deterministic approach was recommended. Such an approach necessarily requires the investigator to define distributions around test characteristics as well as their desired probability of attaining a given predictive power. The proposed approach is easily implemented deterministically since values of the discriminatory power of the tests are readily and publicly available. The probabilistic implementation is also easily implemented, but requires that the uncertainty around the test performance and prevalence, and the targets for probability of attaining the desired predictive value all be made explicit rather than remain implicit as is often the case in ‘integrated risk assessment’ or ‘totality of evidence’ presentations. This general approach could form a basis for testing and decision-making that can be communicated and discussed in a consistent manner between scientists as well as between sponsors and regulators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆上飞完成签到,获得积分10
8秒前
胖小羊完成签到 ,获得积分10
16秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
Yoanna应助科研通管家采纳,获得10
20秒前
Yoanna应助科研通管家采纳,获得10
20秒前
31秒前
量子星尘发布了新的文献求助30
40秒前
大生蚝完成签到,获得积分10
1分钟前
阿斯戳完成签到,获得积分20
1分钟前
1分钟前
斯文败类应助阿斯戳采纳,获得10
1分钟前
2分钟前
Okypete发布了新的文献求助10
2分钟前
脑洞疼应助闪闪翼采纳,获得10
2分钟前
彩虹儿完成签到,获得积分0
2分钟前
Yoanna应助科研通管家采纳,获得10
2分钟前
Yini应助ghost采纳,获得20
2分钟前
2分钟前
阿斯戳发布了新的文献求助10
2分钟前
慕青应助阿斯戳采纳,获得10
2分钟前
77完成签到 ,获得积分10
3分钟前
4分钟前
小燕子完成签到 ,获得积分10
4分钟前
勤恳依霜发布了新的文献求助10
4分钟前
老阎应助勤恳依霜采纳,获得30
4分钟前
共享精神应助勤恳依霜采纳,获得10
4分钟前
kmzzy完成签到,获得积分10
5分钟前
kuoping完成签到,获得积分0
5分钟前
5分钟前
闪闪翼发布了新的文献求助10
5分钟前
5分钟前
wwe完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
西安浴日光能赵炜完成签到,获得积分10
6分钟前
Yoanna应助科研通管家采纳,获得20
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957939
求助须知:如何正确求助?哪些是违规求助? 4219149
关于积分的说明 13133252
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190252
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625