Probabilistic physics-guided machine learning for fatigue data analysis

人工神经网络 概率逻辑 机器学习 人工智能 计算机科学 功能(生物学) 参数统计 数据点 数学 统计 进化生物学 生物
作者
Jie Chen,Yongming Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:168: 114316-114316 被引量:73
标识
DOI:10.1016/j.eswa.2020.114316
摘要

A Probabilistic Physics-guided Neural Network (PPgNN) is proposed in this paper for probabilistic fatigue S-N curve estimation. The proposed model overcomes the limitations in existing parametric regression models and classical machine learning models for fatigue data analysis. Compared with explicit regression-type models (such as power law fitting), the PPgNN is flexible and does not impose restrictions on function types at different stress levels, mean stresses, or other factors. One unique benefit is that the proposed method includes the known physics/knowledge constraints in the machine learning model; the method can produce both accurate and physically consistent results compared with the classical machine learning model, such as neural network models. In addition, the PPgNN uses both failure and runout data in the training process, which encodes the runout data using a new proposed loss function, and is beneficial when compared with some existing models using only numerical point value data. A mathematical formulation is derived to include different types of physics constraints, which can deal with mean value, variance, and derivative/curvature constraints. Several data sets from open literature for fatigue S-N curve testing are used for model demonstration and model validation. Next, the proposed network architecture is extended to include multi-factor (e.g., mean stress, corrosion, frequency effect, etc.) fatigue data analysis. It is shown that the proposed PPgNN can serve as a flexible and robust model for general fitting and uncertainty quantification of fatigue data. This paper provides a feasible way to incorporate known physics/knowledge in neural network-based machine learning. This is achieved by properly designing the network topology and constraining the neural network’s biases and weights. The benefits for the proposed physics-guided learning for fatigue data analysis are illustrated by comparing results from neural network models with and without physics guidance. The neural network model, without physics guidance, produces results contradictory to the common knowledge, such as a monotonic decrease of S-N curve slope and a monotonic increase of fatigue life variance as the stress level decreases. This problem can be avoided using the physics-guided learning model with encoded prior physics knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助123采纳,获得30
1秒前
abbsdan完成签到 ,获得积分10
2秒前
2秒前
3秒前
田様应助tataq采纳,获得10
4秒前
打打应助负责新筠采纳,获得10
4秒前
充电宝应助蓝天采纳,获得10
5秒前
7秒前
bkagyin应助amy采纳,获得10
8秒前
粗心的chen发布了新的文献求助10
8秒前
长生的落叶完成签到,获得积分10
9秒前
上官若男应助高兴的彩虹采纳,获得10
10秒前
良辰应助liuyuh采纳,获得10
11秒前
11秒前
12秒前
李爱国应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
QOP应助科研通管家采纳,获得10
14秒前
zhangyidian应助科研通管家采纳,获得10
14秒前
自由安柏应助科研通管家采纳,获得10
14秒前
shouyu29应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
1351567822应助科研通管家采纳,获得150
14秒前
自由安柏应助科研通管家采纳,获得10
14秒前
zbh应助科研通管家采纳,获得10
15秒前
zhangyidian应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
shouyu29应助科研通管家采纳,获得10
15秒前
15秒前
xiaou发布了新的文献求助10
15秒前
15秒前
小马甲应助酷炫的虔纹采纳,获得10
15秒前
AlvinCZY发布了新的文献求助10
15秒前
16秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672517
求助须知:如何正确求助?哪些是违规求助? 3228818
关于积分的说明 9782056
捐赠科研通 2939247
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736174