头颈部鳞状细胞癌
癌症研究
肿瘤微环境
CD8型
医学
髓样
免疫系统
T细胞
放射治疗
免疫疗法
头颈部癌
免疫学
内科学
作者
Dayson Moreira,Sagus Sampath,Haejung Won,Seok Voon White,Yu‐Lin Su,Marice Alcantara,Chongkai Wang,Peter P. Lee,Ellie Maghami,Erminia Massarelli,Marcin Kortylewski
摘要
The tumor microenvironment affects the outcome of radiotherapy against head and neck squamous cell carcinoma (HNSCC). We recently found that tolerogenic myeloid cells accumulate in the circulation of HNSCC patients undergoing radiotherapy. Here, we analyzed tumor-containing lymph node biopsies collected from these patients. After 2 weeks of radiotherapy, we found an increase in tumor-associated macrophages (TAMs) with activated STAT3, while CD8+ T cells were reduced as detected using multiplex IHC. Gene expression profiling indicated upregulation of M2 macrophage–related genes (CD163, CD206), immunosuppressive mediators (ARG1, LIF, TGFB1), and Th2 cytokines (IL4, IL5) in irradiated tumors. We next validated STAT3 as a potential target in human HNSCC-associated TAMs, using UM-SCC1 xenotransplants in humanized mice. Local injections of myeloid cell–targeted STAT3 antisense oligonucleotide (CpG-STAT3ASO) activated human DCs/macrophages and promoted CD8+ T cell recruitment, thereby arresting UM-SCC1 tumor growth. Furthermore, CpG-STAT3ASO synergized with tumor irradiation against syngeneic HPV+ mEERL and HPV– MOC2 HNSCC tumors in mice, triggering tumor regression and/or extending animal survival. The antitumor immune responses were CD8+ and CD4+ T cell dependent and associated with the activation of antigen-presenting cells (DCs/M1 macrophages) and increased CD8+ to regulatory T cell ratio. Our observations suggest that targeted inhibition of STAT3 in tumor-associated myeloid cells augments the efficacy of radiotherapy against HNSCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI