控制理论(社会学)
粒子群优化
沉降时间
温度控制
激光器
MATLAB语言
适应性
计算机科学
控制系统
材料科学
光学
控制工程
工程类
阶跃响应
控制(管理)
物理
算法
生物
操作系统
电气工程
人工智能
生态学
作者
Xiufei Li,Zhuo Wang,Wei Chen,Xiaolin Ning,Wei Quan,Yueyang Zhai
出处
期刊:Applied Optics
[The Optical Society]
日期:2021-01-06
卷期号:60 (2): 326-326
被引量:2
摘要
Aiming at lower startup power consumption, stronger thermal load adaptability, easier parameters adjustment, and higher parameter tuning efficiency for the temperature control system of a distributed Bragg reflector (DBR) semiconductor laser, this paper employs the double-loop control and intelligent parameter tuning methods. First, the thermal equivalent circuit model is established for the laser temperature control system, which has stronger thermal load adaptability than the traditional transfer function model. In order to improve the modeling speed and accuracy, a mean impact value (MIV) quantum particle swarm optimization (QPSO) intelligent algorithm is proposed to tune the model parameters. A double-loop temperature control system is set up on this basis. Then, the MIV-QPSO intelligent algorithm is used to tune the control parameters, which shortens the settling time, increases the tuning efficiency, and improves the temperature control effect. The feasibility and effectiveness of the proposed methods are verified through the MATLAB/Simulink simulation of the laser temperature control process.
科研通智能强力驱动
Strongly Powered by AbleSci AI