抗性(生态学)
生物
机制(生物学)
抗除草剂
杂草
草甘膦
杂草防治
行动地点
生物技术
农学
认识论
内分泌学
哲学
作者
Hudson Kagueyama Takano,R. F. Lopez Ovejero,Gustavo Gross Belchior,Gizella Potrich Leal Maymone,Franck E. Dayan
标识
DOI:10.1590/1678-992x-2019-0102
摘要
Herbicides play an important role in preventing crop yield losses due to both their weed interference ability and their capacity for increasing soil conservation in no-till systems. Group A herbicides or acetyl-CoA carboxylase (ACCase) are essential tools the selective management of glyphosate resistance in grass weed species. In this review, we describe important aspects of ACCase biology and herbicides targeting this enzyme, along with a discussion on stewardship programs to delay the evolution of herbicide resistance which can evolve either through target site and/or non-target site mechanisms. Sixteen-point mutations have been reported to confer resistance to ACCase inhibitors. Each mutation confers cross resistance to a different group of herbicides. Metabolic resistance can result in resistance to multiple herbicides with different mechanisms of action (MoA), and herbicide detoxification is often conferred by cytochrome P450 monooxigenases and glutathione- S -transferases. Regardless of whether resistance mechanisms are target or non-target site, using herbicides with the same MoA will result in resistance evolution. Therefore, while field surveys and resistance mechanism studies are crucial for designing reactive management strategies, integrated weed management plays a central role in both reactive and proactive mitigation of herbicide resistance evolution.
科研通智能强力驱动
Strongly Powered by AbleSci AI