Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes

卷积神经网络 胎头 人工智能 分类 超声波 计算机科学 深度学习 模式识别(心理学) 医学 胎儿 机器学习 放射科 怀孕 遗传学 生物
作者
Xavier P. Burgos-Artizzu,David Coronado-Gutiérrez,B. Valenzuela‐Alcaraz,Elisenda Bonet-Carné,Elisenda Eixarch,F. Crispi,E. Gratacós
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:10 (1) 被引量:87
标识
DOI:10.1038/s41598-020-67076-5
摘要

The goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available) was collected from two different hospitals by several operators and ultrasound machines. All images were manually labeled by an expert maternal fetal clinician. Images were divided into 6 classes: four of the most widely used fetal anatomical planes (Abdomen, Brain, Femur and Thorax), the mother's cervix (widely used for prematurity screening) and a general category to include any other less common image plane. Fetal brain images were further categorized into the 3 most common fetal brain planes (Trans-thalamic, Trans-cerebellum, Trans-ventricular) to judge fine grain categorization performance. The final dataset is comprised of over 12,400 images from 1,792 patients, making it the largest ultrasound dataset to date. We then evaluated a wide variety of state-of-the-art deep Convolutional Neural Networks on this dataset and analyzed results in depth, comparing the computational models to research technicians, which are the ones currently performing the task daily. Results indicate for the first time that computational models have similar performance compared to humans when classifying common planes in human fetal examination. However, the dataset leaves the door open on future research to further improve results, especially on fine-grained plane categorization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的白云完成签到 ,获得积分10
6秒前
穆奕完成签到 ,获得积分10
14秒前
16秒前
leo完成签到,获得积分10
22秒前
www完成签到 ,获得积分10
23秒前
王佳豪完成签到,获得积分10
27秒前
29秒前
34秒前
呵呵发布了新的文献求助10
35秒前
小星历险记完成签到 ,获得积分10
36秒前
Robe完成签到 ,获得积分10
39秒前
liberation完成签到 ,获得积分0
43秒前
45秒前
呵呵完成签到,获得积分20
47秒前
tzy6665完成签到,获得积分10
48秒前
杨天天完成签到,获得积分10
49秒前
roundtree完成签到 ,获得积分0
50秒前
nengzou完成签到 ,获得积分10
52秒前
Sandy应助帅气的宛凝采纳,获得20
55秒前
laber完成签到,获得积分0
55秒前
Fly完成签到 ,获得积分10
59秒前
kanong完成签到,获得积分0
1分钟前
穿山的百足公主完成签到 ,获得积分10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
JayL完成签到,获得积分10
1分钟前
1分钟前
小井盖完成签到 ,获得积分10
1分钟前
故意的小猫咪完成签到,获得积分10
1分钟前
真真完成签到 ,获得积分10
1分钟前
故意的鼠标完成签到,获得积分10
1分钟前
summer完成签到,获得积分10
1分钟前
阿敬完成签到,获得积分10
1分钟前
漂漂亮亮大番薯完成签到,获得积分10
1分钟前
dream完成签到 ,获得积分10
1分钟前
和谐的夏岚完成签到 ,获得积分10
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
现代风格完成签到,获得积分10
1分钟前
luffy完成签到 ,获得积分10
1分钟前
samuel完成签到,获得积分10
1分钟前
Mason完成签到,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167370
捐赠科研通 3248804
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664