Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes

卷积神经网络 胎头 人工智能 分类 超声波 计算机科学 深度学习 模式识别(心理学) 医学 胎儿 机器学习 放射科 怀孕 遗传学 生物
作者
Xavier P. Burgos-Artizzu,David Coronado-Gutiérrez,B. Valenzuela‐Alcaraz,Elisenda Bonet-Carné,Elisenda Eixarch,F. Crispi,E. Gratacós
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1) 被引量:87
标识
DOI:10.1038/s41598-020-67076-5
摘要

The goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available) was collected from two different hospitals by several operators and ultrasound machines. All images were manually labeled by an expert maternal fetal clinician. Images were divided into 6 classes: four of the most widely used fetal anatomical planes (Abdomen, Brain, Femur and Thorax), the mother's cervix (widely used for prematurity screening) and a general category to include any other less common image plane. Fetal brain images were further categorized into the 3 most common fetal brain planes (Trans-thalamic, Trans-cerebellum, Trans-ventricular) to judge fine grain categorization performance. The final dataset is comprised of over 12,400 images from 1,792 patients, making it the largest ultrasound dataset to date. We then evaluated a wide variety of state-of-the-art deep Convolutional Neural Networks on this dataset and analyzed results in depth, comparing the computational models to research technicians, which are the ones currently performing the task daily. Results indicate for the first time that computational models have similar performance compared to humans when classifying common planes in human fetal examination. However, the dataset leaves the door open on future research to further improve results, especially on fine-grained plane categorization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feng完成签到,获得积分10
1秒前
1秒前
美丽稀完成签到,获得积分10
2秒前
PXY应助屁王采纳,获得10
2秒前
sunburst完成签到,获得积分10
2秒前
狼主完成签到 ,获得积分10
2秒前
吕亦寒完成签到,获得积分10
2秒前
junzilan发布了新的文献求助10
3秒前
ZL发布了新的文献求助10
3秒前
3秒前
亻鱼完成签到,获得积分10
3秒前
超级蘑菇完成签到 ,获得积分10
4秒前
4秒前
4秒前
congguitar完成签到,获得积分10
4秒前
5秒前
limof完成签到,获得积分20
5秒前
跳跃聪健发布了新的文献求助10
5秒前
168521kf完成签到,获得积分10
5秒前
6秒前
Avatar完成签到,获得积分10
6秒前
6秒前
小田完成签到,获得积分10
7秒前
JJJ应助大气沅采纳,获得10
7秒前
8秒前
kydd驳回了桐桐应助
8秒前
9秒前
9秒前
9秒前
英俊的铭应助洛尚采纳,获得10
9秒前
10秒前
在水一方应助Harlotte采纳,获得10
10秒前
廖天佑完成签到,获得积分0
10秒前
SweepingMonk应助梁小鑫采纳,获得10
10秒前
DTBTY完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
JACK发布了新的文献求助10
12秒前
小宋同学不能怂完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740