亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation

背景(考古学) 机器学习 化学空间 人工智能 生化工程 计算机科学 药物发现 工程类 生物信息学 生物 古生物学
作者
Harini Narayanan,Fabian Dingfelder,Alessandro Butté,Nikolai Lorenzen,Michael Sokolov,Paolo Arosio
出处
期刊:Trends in Pharmacological Sciences [Elsevier]
卷期号:42 (3): 151-165 被引量:130
标识
DOI:10.1016/j.tips.2020.12.004
摘要

Biologics are an important class of therapeutics due to their high specificity, efficacy, and safety. However, biomolecule discovery and optimal formulation development are time-and resource-intensive. The search space is highly complex and multidimensional because multiple physicochemical properties must be optimized. AI is emerging as a predictive and generative tool to aid in protein engineering for therapeutic applications. AI can also be employed to model multiple biophysical and chemical degradation properties. Successful biologics must satisfy multiple properties including activity and particular physicochemical features that are globally defined as developability. These multiple properties must be simultaneously optimized in a very broad design space of protein sequences and buffer compositions. In this context, artificial intelligence (AI), and especially machine learning (ML), have great potential to accelerate and improve the optimization of protein properties, increasing their activity and safety as well as decreasing their development time and manufacturing costs. We highlight the emerging applications of ML in biologics discovery and development, focusing on protein engineering, early biophysical screening, and formulation. We discuss the power of ML in extracting information from complex datasets and in reducing the necessary experimental effort to simultaneously achieve multiple quality targets. We finally anticipate possible future interventions of AI in several steps of the biological landscape. Successful biologics must satisfy multiple properties including activity and particular physicochemical features that are globally defined as developability. These multiple properties must be simultaneously optimized in a very broad design space of protein sequences and buffer compositions. In this context, artificial intelligence (AI), and especially machine learning (ML), have great potential to accelerate and improve the optimization of protein properties, increasing their activity and safety as well as decreasing their development time and manufacturing costs. We highlight the emerging applications of ML in biologics discovery and development, focusing on protein engineering, early biophysical screening, and formulation. We discuss the power of ML in extracting information from complex datasets and in reducing the necessary experimental effort to simultaneously achieve multiple quality targets. We finally anticipate possible future interventions of AI in several steps of the biological landscape. a domain focusing on simulating human intelligence in a machine, resulting in smart machines. it is a process in which the gene for the protein of interest is transfected into host cells leading to a heterogeneous cell pool. Cells are sorted into single-cell cultures, and the cell line that produces highest quality and quantity in sequentially scaled-up culture is selected for the master cell bank which is used for production during clinical trials and later for commercial use. supervised learning tasks where the target is categorical, for instance, 'yes' or 'no'. a subclass of machine learning (ML) that uses sophisticated multilevel deep neural networks to train on unlabeled or labeled data. designing completely new polypeptide sequences that can fold into a stable 3D structure and show desired functionality (existing or new). a protein engineering method that uses multiple rounds of mutagenesis and selection to improve existing functions. the part of an antigen that interacts with the antibody. the technique of obtaining meaningful information from the raw inputs while preparing a representation of a dataset that is compatible with ML algorithms. This can be based on domain knowledge or on black-box methods (such as DL). features built on top of existing features. For instance, during object identification in images, pixels are grouped to identify lines and edges (features or low-level features) and operations are performed to extract shapes from these features (higher-level features). unlike the direct approach, that takes the input and predicts the output, inverse design determines the input that will lead to the output of interest. the science of controlling and manipulating fluids at a micrometer scale; this is governed by physical principles that differ from those operating at the macroscale. Microfluidic devices contain channel networks, require small sample volumes, and offer the potential to perform multiple experiments in parallel. an ML paradigm in which the aim is to leverage information contained in multiple tasks to assist generalization in all tasks and also to facilitate efficient learning for related task with fewer datapoints. the part of an antibody that recognizes and binds to the antigen. protein engineering using a priori knowledge about protein residues, domains, and scaffolds to target specific interactions or functions. For instance, fusing well-characterized protein domains to create a single multidomain protein with distinct functions. an ML approach that interacts with its environment by producing actions and learning the relationship between possible actions and the outcomes. supervised learning tasks where the target is continuous. mathematical models (or software) that use measurements from other physical sensors to estimate the values of variables that are difficult to measure. an ML paradigm in which knowledge obtained in a particular task is used in a related task by repurposing the model learned in one task as the starting point for the other. raw data that do not possess a fixed-length vector representation that is classically required as input to ML algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxcvvbb1001完成签到 ,获得积分10
5秒前
8秒前
renren发布了新的文献求助10
13秒前
39秒前
Yuki完成签到 ,获得积分10
44秒前
50秒前
ceeray23发布了新的文献求助20
57秒前
领导范儿应助科研通管家采纳,获得30
59秒前
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
今后应助ceeray23采纳,获得20
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
情怀应助ceeray23采纳,获得20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
香菜张发布了新的文献求助10
4分钟前
4分钟前
4分钟前
znchick完成签到,获得积分10
5分钟前
BowieHuang应助Wei采纳,获得10
5分钟前
Raunio完成签到,获得积分10
5分钟前
6分钟前
souther完成签到,获得积分0
6分钟前
小王完成签到 ,获得积分10
6分钟前
2633148059完成签到,获得积分10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
songlf23发布了新的文献求助200
7分钟前
丘比特应助香菜张采纳,获得10
7分钟前
Akim应助香菜张采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529261
求助须知:如何正确求助?哪些是违规求助? 4618429
关于积分的说明 14562611
捐赠科研通 4557443
什么是DOI,文献DOI怎么找? 2497532
邀请新用户注册赠送积分活动 1477742
关于科研通互助平台的介绍 1449173