已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation

背景(考古学) 机器学习 化学空间 人工智能 生化工程 计算机科学 药物发现 工程类 生物信息学 生物 古生物学
作者
Harini Narayanan,Fabian Dingfelder,Alessandro Butté,Nikolai Lorenzen,Michael Sokolov,Paolo Arosio
出处
期刊:Trends in Pharmacological Sciences [Elsevier]
卷期号:42 (3): 151-165 被引量:130
标识
DOI:10.1016/j.tips.2020.12.004
摘要

Biologics are an important class of therapeutics due to their high specificity, efficacy, and safety. However, biomolecule discovery and optimal formulation development are time-and resource-intensive. The search space is highly complex and multidimensional because multiple physicochemical properties must be optimized. AI is emerging as a predictive and generative tool to aid in protein engineering for therapeutic applications. AI can also be employed to model multiple biophysical and chemical degradation properties. Successful biologics must satisfy multiple properties including activity and particular physicochemical features that are globally defined as developability. These multiple properties must be simultaneously optimized in a very broad design space of protein sequences and buffer compositions. In this context, artificial intelligence (AI), and especially machine learning (ML), have great potential to accelerate and improve the optimization of protein properties, increasing their activity and safety as well as decreasing their development time and manufacturing costs. We highlight the emerging applications of ML in biologics discovery and development, focusing on protein engineering, early biophysical screening, and formulation. We discuss the power of ML in extracting information from complex datasets and in reducing the necessary experimental effort to simultaneously achieve multiple quality targets. We finally anticipate possible future interventions of AI in several steps of the biological landscape. Successful biologics must satisfy multiple properties including activity and particular physicochemical features that are globally defined as developability. These multiple properties must be simultaneously optimized in a very broad design space of protein sequences and buffer compositions. In this context, artificial intelligence (AI), and especially machine learning (ML), have great potential to accelerate and improve the optimization of protein properties, increasing their activity and safety as well as decreasing their development time and manufacturing costs. We highlight the emerging applications of ML in biologics discovery and development, focusing on protein engineering, early biophysical screening, and formulation. We discuss the power of ML in extracting information from complex datasets and in reducing the necessary experimental effort to simultaneously achieve multiple quality targets. We finally anticipate possible future interventions of AI in several steps of the biological landscape. a domain focusing on simulating human intelligence in a machine, resulting in smart machines. it is a process in which the gene for the protein of interest is transfected into host cells leading to a heterogeneous cell pool. Cells are sorted into single-cell cultures, and the cell line that produces highest quality and quantity in sequentially scaled-up culture is selected for the master cell bank which is used for production during clinical trials and later for commercial use. supervised learning tasks where the target is categorical, for instance, 'yes' or 'no'. a subclass of machine learning (ML) that uses sophisticated multilevel deep neural networks to train on unlabeled or labeled data. designing completely new polypeptide sequences that can fold into a stable 3D structure and show desired functionality (existing or new). a protein engineering method that uses multiple rounds of mutagenesis and selection to improve existing functions. the part of an antigen that interacts with the antibody. the technique of obtaining meaningful information from the raw inputs while preparing a representation of a dataset that is compatible with ML algorithms. This can be based on domain knowledge or on black-box methods (such as DL). features built on top of existing features. For instance, during object identification in images, pixels are grouped to identify lines and edges (features or low-level features) and operations are performed to extract shapes from these features (higher-level features). unlike the direct approach, that takes the input and predicts the output, inverse design determines the input that will lead to the output of interest. the science of controlling and manipulating fluids at a micrometer scale; this is governed by physical principles that differ from those operating at the macroscale. Microfluidic devices contain channel networks, require small sample volumes, and offer the potential to perform multiple experiments in parallel. an ML paradigm in which the aim is to leverage information contained in multiple tasks to assist generalization in all tasks and also to facilitate efficient learning for related task with fewer datapoints. the part of an antibody that recognizes and binds to the antigen. protein engineering using a priori knowledge about protein residues, domains, and scaffolds to target specific interactions or functions. For instance, fusing well-characterized protein domains to create a single multidomain protein with distinct functions. an ML approach that interacts with its environment by producing actions and learning the relationship between possible actions and the outcomes. supervised learning tasks where the target is continuous. mathematical models (or software) that use measurements from other physical sensors to estimate the values of variables that are difficult to measure. an ML paradigm in which knowledge obtained in a particular task is used in a related task by repurposing the model learned in one task as the starting point for the other. raw data that do not possess a fixed-length vector representation that is classically required as input to ML algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
短巷完成签到 ,获得积分10
1秒前
牛哥发布了新的文献求助10
3秒前
4秒前
7秒前
猜不猜不完成签到 ,获得积分10
7秒前
菜芽君完成签到,获得积分10
7秒前
杜飞发布了新的文献求助10
7秒前
文静的可仁完成签到,获得积分10
8秒前
fff完成签到 ,获得积分10
8秒前
我吃小饼干完成签到 ,获得积分10
10秒前
12秒前
grace完成签到 ,获得积分10
12秒前
zcm1999完成签到,获得积分10
12秒前
hauru完成签到,获得积分10
16秒前
李爱国应助香菜包采纳,获得10
16秒前
momo完成签到,获得积分10
22秒前
THEO完成签到,获得积分10
22秒前
Unlisted完成签到,获得积分10
24秒前
Cope完成签到 ,获得积分10
25秒前
25秒前
小白完成签到,获得积分10
26秒前
魔幻以菱完成签到 ,获得积分10
27秒前
xxx发布了新的文献求助10
30秒前
蛙蛙应助U87采纳,获得30
30秒前
加菲丰丰完成签到,获得积分0
31秒前
曾予嘉完成签到 ,获得积分10
34秒前
揽月完成签到,获得积分10
37秒前
小袁冲冲冲完成签到,获得积分10
38秒前
小二郎应助陶醉紫菜采纳,获得10
38秒前
gura完成签到 ,获得积分10
39秒前
21完成签到 ,获得积分10
40秒前
40秒前
桐桐应助曾予嘉采纳,获得10
41秒前
xiaohan,JIA完成签到,获得积分10
44秒前
充电宝应助杜飞采纳,获得10
47秒前
47秒前
bigan完成签到,获得积分20
48秒前
顾子墨发布了新的文献求助10
53秒前
菲1208完成签到,获得积分10
53秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655