坑洞(地质)
计算机视觉
人工智能
计算机科学
立体视觉
直方图
帧速率
图像(数学)
岩石学
地质学
作者
Naveen Kumar Bangalore Ramaiah,Subrata Kumar Kundu
出处
期刊:SAE International Journal of Advances and Current Practices in Mobility
日期:2021-04-06
卷期号:3 (5): 2603-2610
被引量:2
摘要
<div class="section abstract"><div class="htmlview paragraph">Stereo vision based sensing systems have gained significant attention during the last two decades due to its reliable and accurate obstacle detection and recognition capabilities. Such systems with advanced processing units are now widely used in partially automated vehicles to improve passengers’ safety and comfort level. A predictive suspension control system that could provide better ride comfort and safety to the passengers by detecting potholes in advance and control the suspension system accordingly has been investigated in this study. Potholes can become serious safety hazard and can often cause discomfort if not detected and maneuvered at the right time. In this paper, a novel stereo vision based pothole detection system is proposed that detects pothole and calculates its depth accurately. In this proposed system, region of interest (ROI) of potential pothole candidates are selected utilizing intensity image and disparity image which is created using a pair of stereo images captured by a stereo camera. An intensity-depth based classifier has been developed which identifies the potholes from selected candidates and calculates its depth. Finally, 3D information of detected potholes is used to control the damping coefficient of the suspension system to improve the ride quality. The performance of the proposed pothole detection system has been evaluated using approximately 3.5 hours of driving video data captured with a frame rate of 20 frames/second. Experimental results show that, the accuracy of the proposed pothole detection system is about 84% and can detect pothole with ≥ 5 cm depth. Moreover, in-vehicle experiments confirm that the ride quality can be improved of about 16% utilizing the pothole detection system. The proposed system can be implemented for real-time applications in commercial vehicles and could provide significant benefits by improving safety and ride quality.</div></div>
科研通智能强力驱动
Strongly Powered by AbleSci AI