Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 人工智能 计算机科学 钙化 模式识别(心理学) 超声波 超声成像 生物医学工程 放射科 材料科学 计算机视觉 医学
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:42
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助zsy采纳,获得10
刚刚
刚刚
田様应助端庄书雁采纳,获得10
刚刚
甜蜜不悔完成签到,获得积分10
刚刚
1秒前
顾矜应助西木采纳,获得10
1秒前
我是老大应助save采纳,获得10
1秒前
冷傲的人雄完成签到,获得积分10
1秒前
华仔应助YY采纳,获得10
1秒前
mouxq发布了新的文献求助10
2秒前
汉堡包应助包包琪采纳,获得10
2秒前
甜美鬼神发布了新的文献求助10
2秒前
55完成签到,获得积分10
2秒前
wanci应助XHH1994采纳,获得10
3秒前
英姑应助动听的店员采纳,获得10
4秒前
CCCZH发布了新的文献求助10
4秒前
5秒前
6秒前
起朱楼完成签到,获得积分10
6秒前
自信璎发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
hyominhsu完成签到,获得积分10
7秒前
852应助笑点低的碧琴采纳,获得10
7秒前
8秒前
嘿哈发布了新的文献求助10
8秒前
可爱的函函应助zhangsiyao采纳,获得10
9秒前
9秒前
9秒前
木木发布了新的文献求助10
10秒前
DVDDVD不反对完成签到,获得积分10
10秒前
111完成签到,获得积分10
11秒前
栀暖棠深发布了新的文献求助10
11秒前
科研通AI5应助贾翔采纳,获得10
11秒前
12秒前
科研通AI5应助徐昊雯采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
Highsea完成签到,获得积分10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709