Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 人工智能 计算机科学 钙化 模式识别(心理学) 超声波 超声成像 生物医学工程 放射科 材料科学 计算机视觉 医学
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:55
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
quasar完成签到,获得积分10
1秒前
lvzhihao完成签到,获得积分10
1秒前
李宏梅完成签到,获得积分10
1秒前
April发布了新的文献求助10
1秒前
1秒前
dd99081完成签到,获得积分10
1秒前
AAAA完成签到,获得积分10
1秒前
大意的小小完成签到 ,获得积分10
1秒前
2秒前
Hello应助Mashiro采纳,获得10
2秒前
2秒前
鲁松完成签到,获得积分10
2秒前
浮游应助曹萍采纳,获得10
2秒前
彭于晏应助小蜗牛采纳,获得10
3秒前
幽默的煎蛋完成签到,获得积分10
3秒前
典雅的俊驰完成签到,获得积分10
3秒前
3秒前
镓氧锌钇铀应助hsy采纳,获得20
3秒前
欣喜谷槐完成签到,获得积分10
3秒前
张老板完成签到,获得积分20
3秒前
3秒前
舒心新儿应助青春采纳,获得10
4秒前
lqq完成签到,获得积分10
4秒前
4秒前
找回自己完成签到,获得积分10
4秒前
chengzi完成签到,获得积分10
5秒前
Jasper应助汤传麒采纳,获得10
5秒前
5秒前
5秒前
huang完成签到,获得积分10
5秒前
chen完成签到 ,获得积分10
5秒前
sweet_eliza完成签到 ,获得积分10
5秒前
共享精神应助勤劳初蓝采纳,获得10
5秒前
Picachu完成签到 ,获得积分10
6秒前
一页书发布了新的文献求助10
6秒前
石翎完成签到,获得积分10
6秒前
May发布了新的文献求助10
6秒前
6秒前
咕嘟咕嘟发布了新的文献求助10
7秒前
白马爱毛驴完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483071
求助须知:如何正确求助?哪些是违规求助? 4583840
关于积分的说明 14392895
捐赠科研通 4513440
什么是DOI,文献DOI怎么找? 2473476
邀请新用户注册赠送积分活动 1459525
关于科研通互助平台的介绍 1433024