Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 Sørensen–骰子系数 人工智能 计算机科学 深度学习 分割 模式识别(心理学) 灰度 接收机工作特性 人工神经网络 像素 图像分割 放射科 计算机视觉 医学 机器学习
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:40
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media–adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision–recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media–adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
詹姆斯哈登完成签到,获得积分10
刚刚
Orange应助yan采纳,获得10
1秒前
小小枫叶轻轻而过完成签到,获得积分10
1秒前
1秒前
1秒前
34101127完成签到 ,获得积分10
2秒前
阮绿凝发布了新的文献求助10
3秒前
Kaysarr发布了新的文献求助10
3秒前
4秒前
jackiewang发布了新的文献求助10
4秒前
大模型应助伈X采纳,获得10
5秒前
evefei发布了新的文献求助30
5秒前
王菲爱实验完成签到,获得积分10
6秒前
6秒前
9秒前
9秒前
牛牛完成签到 ,获得积分10
9秒前
lsx完成签到,获得积分10
10秒前
tigger完成签到 ,获得积分10
11秒前
兮颜完成签到,获得积分10
11秒前
11秒前
lgh发布了新的文献求助30
12秒前
爱啃文的小郝完成签到,获得积分10
13秒前
14秒前
14秒前
lsx发布了新的文献求助10
14秒前
14秒前
小王哪跑发布了新的文献求助10
14秒前
15秒前
liu发布了新的文献求助10
15秒前
15秒前
共享精神应助韩立采纳,获得10
16秒前
立华奏完成签到,获得积分10
17秒前
大个应助怕孤单的思雁采纳,获得10
17秒前
万能图书馆应助小芳儿采纳,获得10
17秒前
18秒前
wangkinju发布了新的文献求助10
18秒前
Gergeo应助曾经二娘采纳,获得20
19秒前
111111发布了新的文献求助10
20秒前
hhh完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919