亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 人工智能 计算机科学 钙化 模式识别(心理学) 超声波 超声成像 生物医学工程 放射科 材料科学 计算机视觉 医学
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:55
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
24秒前
李健应助ARESCI采纳,获得10
46秒前
samsahpiyaz发布了新的文献求助10
1分钟前
犹豫翠萱完成签到 ,获得积分10
2分钟前
老迟到的羊完成签到 ,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
2分钟前
moonlight发布了新的文献求助10
3分钟前
gjq完成签到,获得积分10
3分钟前
hhuajw完成签到,获得积分10
3分钟前
烂漫的芫完成签到 ,获得积分10
4分钟前
4分钟前
爱思考的小笨笨完成签到,获得积分10
4分钟前
4分钟前
obedVL完成签到,获得积分10
4分钟前
昵称已挥发完成签到,获得积分10
4分钟前
sldragon完成签到,获得积分10
4分钟前
5分钟前
xiaoyuan发布了新的文献求助10
5分钟前
小黄还你好完成签到 ,获得积分10
5分钟前
LYL完成签到,获得积分10
5分钟前
Wei发布了新的文献求助10
5分钟前
6分钟前
群山完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
脑洞疼应助米兰的小铁匠采纳,获得10
6分钟前
7分钟前
7分钟前
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
9分钟前
gszy1975完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
SciGPT应助务实的犀牛采纳,获得10
9分钟前
冉亦完成签到,获得积分10
10分钟前
10分钟前
yhw发布了新的文献求助10
10分钟前
Jay完成签到,获得积分10
11分钟前
空里叽哇完成签到,获得积分10
12分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668646
关于积分的说明 14771521
捐赠科研通 4613528
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516