亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 人工智能 计算机科学 钙化 模式识别(心理学) 超声波 超声成像 生物医学工程 放射科 材料科学 计算机视觉 医学
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:55
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blenx完成签到,获得积分10
5秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得50
6秒前
TYM发布了新的文献求助30
12秒前
22秒前
迷路千琴完成签到,获得积分10
1分钟前
Eeeeven完成签到 ,获得积分10
1分钟前
2分钟前
ceeray23应助科研通管家采纳,获得200
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
追梦远行人完成签到 ,获得积分10
2分钟前
Jay发布了新的文献求助30
2分钟前
TYM发布了新的文献求助10
3分钟前
Jay关闭了Jay文献求助
3分钟前
星辰大海应助TYM采纳,获得10
3分钟前
3分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
科研通AI6应助明芬采纳,获得10
4分钟前
星辰大海应助谭代涛采纳,获得10
4分钟前
4分钟前
洛莉塔发布了新的文献求助10
4分钟前
洛莉塔完成签到,获得积分10
4分钟前
ding应助明芬采纳,获得10
4分钟前
mathmotive完成签到,获得积分10
5分钟前
5分钟前
5分钟前
谭代涛发布了新的文献求助10
5分钟前
英勇明雪完成签到 ,获得积分10
5分钟前
5分钟前
TYM发布了新的文献求助10
5分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
李健应助科研通管家采纳,获得10
6分钟前
今后应助TYM采纳,获得10
6分钟前
silence完成签到 ,获得积分10
6分钟前
明芬发布了新的文献求助10
6分钟前
6分钟前
Puan发布了新的文献求助10
6分钟前
Puan完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671325
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505547
关于科研通互助平台的介绍 1470945