已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 人工智能 计算机科学 钙化 模式识别(心理学) 超声波 超声成像 生物医学工程 放射科 材料科学 计算机视觉 医学
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:55
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chigga发布了新的文献求助10
3秒前
王先生发布了新的文献求助10
3秒前
5秒前
5秒前
GGGirafe发布了新的文献求助10
6秒前
9秒前
9秒前
二舅司机发布了新的文献求助10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
Disguise发布了新的文献求助10
15秒前
18秒前
18秒前
21秒前
GAO完成签到,获得积分10
21秒前
ChenWei发布了新的文献求助10
22秒前
Jasper应助没想到羽毛采纳,获得10
22秒前
nxy完成签到 ,获得积分10
22秒前
23秒前
Kurimi发布了新的文献求助10
28秒前
ken完成签到 ,获得积分10
29秒前
30秒前
GGGirafe完成签到,获得积分10
32秒前
scanker1981完成签到,获得积分10
35秒前
影月完成签到,获得积分10
35秒前
xx发布了新的文献求助10
35秒前
华仔应助墨瞳采纳,获得10
36秒前
李健的小迷弟应助alulu采纳,获得10
36秒前
田様应助谦让的紫蓝采纳,获得10
36秒前
38秒前
花凉完成签到,获得积分10
39秒前
科研通AI6.1应助Disguise采纳,获得10
40秒前
41秒前
Kurimi完成签到,获得积分10
42秒前
花凉发布了新的文献求助10
43秒前
yang完成签到,获得积分10
45秒前
爱吃肉肉的蚂蚁完成签到,获得积分20
46秒前
wurugu发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772121
求助须知:如何正确求助?哪些是违规求助? 5596217
关于积分的说明 15429142
捐赠科研通 4905232
什么是DOI,文献DOI怎么找? 2639279
邀请新用户注册赠送积分活动 1587204
关于科研通互助平台的介绍 1542058