Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 人工智能 计算机科学 钙化 模式识别(心理学) 超声波 超声成像 生物医学工程 放射科 材料科学 计算机视觉 医学
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:55
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助le采纳,获得10
刚刚
活着完成签到 ,获得积分10
刚刚
zhull发布了新的文献求助20
1秒前
2秒前
纪秋完成签到,获得积分10
4秒前
guozizi发布了新的文献求助10
4秒前
共享精神应助jinx采纳,获得10
4秒前
4秒前
煤炭不甜发布了新的文献求助10
4秒前
ABC完成签到,获得积分10
4秒前
4秒前
丘比特应助pups采纳,获得10
4秒前
5秒前
香蕉觅云应助小小怪下士采纳,获得30
5秒前
zhull完成签到,获得积分10
7秒前
彭于晏应助空想家采纳,获得10
9秒前
xnz发布了新的文献求助10
10秒前
蒋蒋蒋发布了新的文献求助10
10秒前
orixero应助zhull采纳,获得20
11秒前
11秒前
搜集达人应助哆啦十七采纳,获得10
11秒前
夸父完成签到,获得积分10
12秒前
苏卿发布了新的文献求助30
12秒前
煤炭不甜完成签到,获得积分10
13秒前
16秒前
LYB吕发布了新的文献求助10
16秒前
丰富的幻巧关注了科研通微信公众号
16秒前
谢谢完成签到,获得积分20
17秒前
18秒前
雪白的听寒完成签到 ,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
23秒前
xnz完成签到,获得积分20
23秒前
今后应助辛勤笑旋采纳,获得10
24秒前
jinx发布了新的文献求助10
26秒前
求助人员发布了新的文献求助10
27秒前
北风语完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569662
求助须知:如何正确求助?哪些是违规求助? 4654638
关于积分的说明 14710375
捐赠科研通 4595950
什么是DOI,文献DOI怎么找? 2522192
邀请新用户注册赠送积分活动 1493397
关于科研通互助平台的介绍 1463987