Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 人工智能 计算机科学 钙化 模式识别(心理学) 超声波 超声成像 生物医学工程 放射科 材料科学 计算机视觉 医学
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:42
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
randi发布了新的文献求助10
刚刚
1秒前
孤独的枫叶完成签到,获得积分10
1秒前
1秒前
1秒前
DQ发布了新的文献求助10
2秒前
义气的巨人完成签到,获得积分10
2秒前
if发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
科研通AI6应助xiao采纳,获得10
3秒前
4秒前
呼君伟完成签到,获得积分10
5秒前
含糊的蓉蓉完成签到,获得积分10
5秒前
传奇3应助XHW采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
紫寻发布了新的文献求助10
6秒前
Owen应助优秀乐松采纳,获得20
6秒前
霸气以菱完成签到 ,获得积分10
6秒前
华仔应助文静灵阳采纳,获得10
6秒前
英俊的铭应助lbc采纳,获得10
6秒前
英姑应助坚强芸采纳,获得10
7秒前
QIJIU666关注了科研通微信公众号
7秒前
seeya发布了新的文献求助10
8秒前
8秒前
李晓燕发布了新的文献求助10
8秒前
9秒前
李健应助MG采纳,获得10
9秒前
9秒前
yznfly应助逐风采纳,获得50
9秒前
9秒前
飘逸抽屉发布了新的文献求助10
10秒前
10秒前
10秒前
大模型应助跳动的蓝精灵采纳,获得10
11秒前
阳光向秋发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012831
求助须知:如何正确求助?哪些是违规求助? 4253941
关于积分的说明 13256670
捐赠科研通 4056949
什么是DOI,文献DOI怎么找? 2219007
邀请新用户注册赠送积分活动 1228513
关于科研通互助平台的介绍 1151089