Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

血管内超声 卷积神经网络 人工智能 计算机科学 钙化 模式识别(心理学) 超声波 超声成像 生物医学工程 放射科 材料科学 计算机视觉 医学
作者
Yi‐Chen Li,Thau‐Yun Shen,Chien‐Cheng Chen,Wei‐Ting Chang,Po-Yang Lee,Chien‐Chung Huang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1762-1772 被引量:55
标识
DOI:10.1109/tuffc.2021.3052486
摘要

Atherosclerosis is the major cause of cardiovascular diseases (CVDs). Intravascular ultrasound (IVUS) is a common imaging modality for diagnosing CVDs. However, an efficient analyzer for IVUS image segmentation is required for assisting cardiologists. In this study, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images. A total of 713 grayscale IVUS images from 18 patients were used as training data for the proposed deep-learning model. The model is constructed using the three modified U-Nets and combined with the concept of cascaded networks to prevent errors in the detection of calcification owing to the interference of pixels outside the plaque regions. Three loss functions (Dice, Tversky, and focal loss) with various characteristics were tested to determine the best setting for the proposed model. The efficacy of the deep-learning model was evaluated by analyzing precision-recall curve. The average precision (AP), Dice score coefficient, precision, sensitivity, and specificity of the predicted and ground truth results were then compared. All training processes were validated using leave-one-subject-out cross-validation. The experimental results showed that the proposed deep-learning model exhibits high performance in segmenting the media-adventitia layers and luminal regions for all loss functions, with all tested metrics being higher than 0.90. For locating calcified tissues, the best result was obtained when the focal loss function was applied to the proposed model, with an AP of 0.73; however, the prediction efficacy was affected by the proportion of calcified tissues within the plaque region when the focal loss function was employed. Compared with commercial software, the proposed method exhibited high accuracy in segmenting IVUS images in some special cases, such as when shadow artifacts or side vessels surrounded the target vessel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanshou完成签到,获得积分10
刚刚
刚刚
锦慜发布了新的文献求助10
1秒前
1秒前
杨仔完成签到,获得积分10
1秒前
淡如水发布了新的文献求助10
2秒前
will发布了新的文献求助10
2秒前
赘婿应助冷傲迎梦采纳,获得10
2秒前
3秒前
YY发布了新的文献求助10
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
香蕉觅云应助琳666采纳,获得10
5秒前
zl12应助幽默尔蓝采纳,获得10
5秒前
zwy发布了新的文献求助10
5秒前
郭奕沛完成签到,获得积分10
5秒前
科研通AI2S应助震震采纳,获得10
7秒前
xs发布了新的文献求助10
8秒前
8秒前
芝士酱完成签到,获得积分10
9秒前
张11发布了新的文献求助10
9秒前
10秒前
邓佳鑫Alan应助ZZQ采纳,获得10
11秒前
12秒前
ZhouXB完成签到,获得积分10
13秒前
大宝剑2号完成签到 ,获得积分10
14秒前
李健应助锅锅采纳,获得10
14秒前
15秒前
15秒前
15秒前
小猪发布了新的文献求助10
15秒前
呆萌的早晨完成签到,获得积分10
15秒前
科研通AI6应助超级佳倍采纳,获得10
16秒前
18秒前
丘比特应助文官采纳,获得10
18秒前
小小应助will采纳,获得10
18秒前
希望天下0贩的0应助ss采纳,获得10
18秒前
Dr_Zhang完成签到,获得积分10
19秒前
含蓄的海完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646