清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis

催化作用 格式化 二氧化碳电化学还原 电催化剂 氧化还原 太阳能燃料 化学 电子转移 碳纤维 化学工程 无机化学 材料科学 纳米技术 电化学 光化学 一氧化碳 电极 有机化学 物理化学 工程类 光催化 复合材料 复合数
作者
Sheng Zhang,Qun Fan,Rong Xia,Thomas J. Meyer
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (1): 255-264 被引量:526
标识
DOI:10.1021/acs.accounts.9b00496
摘要

Due to increasing worldwide fossil fuel consumption, carbon dioxide levels have increased in the atmosphere with increasingly important impacts on the environment. Renewable and clean sources of energy have been proposed, including wind and solar, but they are intermittent and require efficient and scalable energy storage technologies. Electrochemical CO2 reduction reaction (CO2RR) provides a valuable approach in this area. It combines solar- or wind-generated electrical production with energy storage in the chemical bonds of carbon-based fuels. It can provide ways to integrate carbon capture, utilization, and storage in energy cycles while maintaining controlled levels of atmospheric CO2. Electrochemistry allows for the utilization of an electrical input to drive chemical reactions. Because CO2 is kinetically inert, highly active catalysts are required to decrease reaction barriers sufficiently so that reaction rates can be achieved that are sufficient for electrochemical CO2 reduction. Given the reaction barriers associated with multiple electron-proton reduction of CO2 to CO, formaldehyde (HC(O)H), formic acid, or formate (HC(O)OH, HC(O)O-), or more highly reduced forms of carbon, there is also a demand for high selectivity in catalysis. Catalysts that have been explored include homogeneous catalysts in solution, catalysts immobilized on surfaces, and heterogeneous catalysts. In homogeneous catalysis, reduction occurs following diffusion of the catalyst to an electrode where multiple proton coupled electron transfer reduction occurs. Useful catalysts in this area are typically transition-metal complexes with organic ligands and electron transfer properties that utilize combinations of metal and ligand redox levels. As a way to limit the amount of catalyst, in device-like configurations, catalysts are added to the surfaces of conductive substrates by surface binding, in polymeric films, or on carbon electrode surfaces with molecular structures and electronic configurations related to catalysts in solution. Immobilized, homogeneous catalysts can suffer from performance losses and even decomposition during long-term CO2 reduction cycles, but they are amenable to detailed mechanistic investigations. In parallel efforts, heterogeneous nanocatalysts have been explored in detail with the development of facile synthetic procedures that can offer highly active catalytic surface areas. Their high activity and stability have attracted a significant level of investigation, including possible exploitation for large-scale applications. However, translation of catalytic reactivity to the surface creates a new reactivity environment and complicates the elucidation of mechanistic details and identification of the active site in exploring reaction pathways. Here, the results of previous studies based on transition-metal complex catalysts for CO2 electroreduction are summarized. Early studies showed that transition-metal complexes of Ru, Ir, Rh, and Os, with well-defined structures, are all capable of catalyzing CO2 reduction to CO or formate. Derivatives of the complexes were surface attached to conducting electrodes by chemical bonding, noncovalent bonding, or polymerization. The concept of surface binding has also been extended to the preparation of surface area electrodes by the chemically controlled deposition of nanostructured catalysts such as nano tin, nano copper, and nano carbon, all of which have been shown to have high selectivities and activities toward CO2 reduction. In our presentation, we end this Account with recent advances and a perspective about the application of electrocatalysis in carbon dioxide reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZDM6094完成签到 ,获得积分10
4秒前
史前巨怪完成签到,获得积分10
9秒前
18秒前
mito完成签到,获得积分10
21秒前
IIT一根草发布了新的文献求助30
22秒前
H1lb2rt完成签到 ,获得积分10
26秒前
ldjldj_2004完成签到 ,获得积分10
39秒前
兔兔完成签到 ,获得积分10
43秒前
YifanWang应助科研通管家采纳,获得20
51秒前
YifanWang应助科研通管家采纳,获得10
51秒前
YifanWang应助科研通管家采纳,获得10
51秒前
51秒前
YifanWang应助科研通管家采纳,获得10
51秒前
拉长的芷烟完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
Skywings发布了新的文献求助30
2分钟前
比比谁的速度快应助江江采纳,获得10
2分钟前
gsji完成签到 ,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
xue112完成签到 ,获得积分10
3分钟前
胡33完成签到,获得积分10
3分钟前
你要学好完成签到 ,获得积分10
3分钟前
科研狗完成签到 ,获得积分10
3分钟前
东风完成签到,获得积分10
4分钟前
文献搬运工完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
4分钟前
zpc猪猪完成签到,获得积分10
5分钟前
5分钟前
123321完成签到 ,获得积分10
5分钟前
一一完成签到 ,获得积分10
5分钟前
5分钟前
jlwang完成签到,获得积分10
5分钟前
5分钟前
恒牙完成签到 ,获得积分10
6分钟前
江江关注了科研通微信公众号
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008520
求助须知:如何正确求助?哪些是违规求助? 3548215
关于积分的说明 11298720
捐赠科研通 3282912
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811209