CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis

催化作用 格式化 二氧化碳电化学还原 电催化剂 氧化还原 太阳能燃料 化学 电子转移 碳纤维 化学工程 无机化学 材料科学 纳米技术 电化学 光化学 一氧化碳 电极 有机化学 物理化学 复合材料 工程类 复合数 光催化
作者
Sheng Zhang,Qun Fan,Rong Xia,Thomas J. Meyer
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (1): 255-264 被引量:467
标识
DOI:10.1021/acs.accounts.9b00496
摘要

Due to increasing worldwide fossil fuel consumption, carbon dioxide levels have increased in the atmosphere with increasingly important impacts on the environment. Renewable and clean sources of energy have been proposed, including wind and solar, but they are intermittent and require efficient and scalable energy storage technologies. Electrochemical CO2 reduction reaction (CO2RR) provides a valuable approach in this area. It combines solar- or wind-generated electrical production with energy storage in the chemical bonds of carbon-based fuels. It can provide ways to integrate carbon capture, utilization, and storage in energy cycles while maintaining controlled levels of atmospheric CO2. Electrochemistry allows for the utilization of an electrical input to drive chemical reactions. Because CO2 is kinetically inert, highly active catalysts are required to decrease reaction barriers sufficiently so that reaction rates can be achieved that are sufficient for electrochemical CO2 reduction. Given the reaction barriers associated with multiple electron-proton reduction of CO2 to CO, formaldehyde (HC(O)H), formic acid, or formate (HC(O)OH, HC(O)O-), or more highly reduced forms of carbon, there is also a demand for high selectivity in catalysis. Catalysts that have been explored include homogeneous catalysts in solution, catalysts immobilized on surfaces, and heterogeneous catalysts. In homogeneous catalysis, reduction occurs following diffusion of the catalyst to an electrode where multiple proton coupled electron transfer reduction occurs. Useful catalysts in this area are typically transition-metal complexes with organic ligands and electron transfer properties that utilize combinations of metal and ligand redox levels. As a way to limit the amount of catalyst, in device-like configurations, catalysts are added to the surfaces of conductive substrates by surface binding, in polymeric films, or on carbon electrode surfaces with molecular structures and electronic configurations related to catalysts in solution. Immobilized, homogeneous catalysts can suffer from performance losses and even decomposition during long-term CO2 reduction cycles, but they are amenable to detailed mechanistic investigations. In parallel efforts, heterogeneous nanocatalysts have been explored in detail with the development of facile synthetic procedures that can offer highly active catalytic surface areas. Their high activity and stability have attracted a significant level of investigation, including possible exploitation for large-scale applications. However, translation of catalytic reactivity to the surface creates a new reactivity environment and complicates the elucidation of mechanistic details and identification of the active site in exploring reaction pathways. Here, the results of previous studies based on transition-metal complex catalysts for CO2 electroreduction are summarized. Early studies showed that transition-metal complexes of Ru, Ir, Rh, and Os, with well-defined structures, are all capable of catalyzing CO2 reduction to CO or formate. Derivatives of the complexes were surface attached to conducting electrodes by chemical bonding, noncovalent bonding, or polymerization. The concept of surface binding has also been extended to the preparation of surface area electrodes by the chemically controlled deposition of nanostructured catalysts such as nano tin, nano copper, and nano carbon, all of which have been shown to have high selectivities and activities toward CO2 reduction. In our presentation, we end this Account with recent advances and a perspective about the application of electrocatalysis in carbon dioxide reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MailkMonk发布了新的文献求助10
1秒前
爱吃饭的黄哥完成签到,获得积分10
3秒前
5秒前
ssx发布了新的文献求助10
6秒前
7秒前
8秒前
风中的如南完成签到,获得积分10
8秒前
mengguzai发布了新的文献求助10
8秒前
森森完成签到,获得积分10
9秒前
科研通AI2S应助zhang采纳,获得10
9秒前
L_完成签到,获得积分10
9秒前
上官若男应助001026Z采纳,获得10
9秒前
FashionBoy应助生动初蓝采纳,获得10
10秒前
孙小雨完成签到,获得积分10
10秒前
牧尔芙发布了新的文献求助10
11秒前
超帅向雁发布了新的文献求助10
12秒前
CodeCraft应助郑雨霏采纳,获得10
12秒前
14秒前
我要发sci完成签到,获得积分10
15秒前
strings完成签到,获得积分10
15秒前
完美世界应助超帅向雁采纳,获得10
15秒前
whyyy完成签到 ,获得积分10
16秒前
17秒前
zhikaiyici完成签到 ,获得积分10
18秒前
狂野傲南完成签到,获得积分10
19秒前
19秒前
20秒前
周凡淇发布了新的文献求助10
21秒前
21秒前
nene发布了新的文献求助10
22秒前
鲜于飞薇发布了新的文献求助10
22秒前
cchow发布了新的文献求助10
22秒前
23秒前
田様应助狂野傲南采纳,获得10
23秒前
23秒前
张婷婷完成签到,获得积分10
24秒前
牧尔芙完成签到 ,获得积分10
24秒前
lls完成签到,获得积分20
24秒前
lhf完成签到,获得积分10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139867
求助须知:如何正确求助?哪些是违规求助? 2790746
关于积分的说明 7796497
捐赠科研通 2447159
什么是DOI,文献DOI怎么找? 1301623
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601185