Deep Learning for Automated Measurement of Hemorrhage and Perihematomal Edema in Supratentorial Intracerebral Hemorrhage

四分位间距 医学 脑出血 一致性 放射科 血肿 核医学 蛛网膜下腔出血 外科 内科学
作者
Rajat Dhar,Guido J Falcone,Yasheng Chen,Ali Hamzehloo,Elayna Kirsch,Rommell B Noche,Kilian Roth,Julián Acosta,Antonio José Ortiz Ruiz,Chia-Ling Phuah,Daniel Woo,Thomas M Gill,Kevin N Sheth,Lee J
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:51 (2): 648-651 被引量:44
标识
DOI:10.1161/strokeaha.119.027657
摘要

Background and Purpose— Volumes of hemorrhage and perihematomal edema (PHE) are well-established biomarkers of primary and secondary injury, respectively, in spontaneous intracerebral hemorrhage. An automated imaging pipeline capable of accurately and rapidly quantifying these biomarkers would facilitate large cohort studies evaluating underlying mechanisms of injury. Methods— Regions of hemorrhage and PHE were manually delineated on computed tomography scans of patients enrolled in 2 intracerebral hemorrhage studies. Manual ground-truth masks from the first cohort were used to train a fully convolutional neural network to segment images into hemorrhage and PHE. The primary outcome was automated-versus-human concordance in hemorrhage and PHE volumes. The secondary outcome was voxel-by-voxel overlap of segmentations, quantified by the Dice similarity coefficient (DSC). Algorithm performance was validated on 84 scans from the second study. Results— Two hundred twenty-four scans from 124 patients with supratentorial intracerebral hemorrhage were used for algorithm derivation. Median volumes were 18 mL (interquartile range, 8–43) for hemorrhage and 12 mL (interquartile range, 5–30) for PHE. Concordance was excellent (0.96) for automated quantification of hemorrhage and good (0.81) for PHE, with DSC of 0.90 (interquartile range, 0.85–0.93) and 0.54 (0.39–0.65), respectively. External validation confirmed algorithm accuracy for hemorrhage (concordance 0.98, DSC 0.90) and PHE (concordance 0.90, DSC 0.55). This was comparable with the consistency observed between 2 human raters (DSC 0.90 for hemorrhage, 0.57 for PHE). Conclusions— We have developed a deep learning-based imaging algorithm capable of accurately measuring hemorrhage and PHE volumes. Rapid and consistent automated biomarker quantification may accelerate powerful and precise studies of disease biology in large cohorts of intracerebral hemorrhage patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伏坎发布了新的文献求助10
1秒前
科研通AI5应助幸福大白采纳,获得10
1秒前
aktuell发布了新的文献求助10
3秒前
王子安应助Stardust采纳,获得10
5秒前
充电宝应助顺利涵菡采纳,获得10
7秒前
8秒前
Buduan完成签到,获得积分10
9秒前
9秒前
Ma关注了科研通微信公众号
11秒前
11秒前
12秒前
畅快城发布了新的文献求助10
12秒前
复成完成签到 ,获得积分10
13秒前
yinle关注了科研通微信公众号
13秒前
aktuell完成签到,获得积分10
13秒前
13秒前
ANG发布了新的文献求助10
13秒前
Lucas应助2116564采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
清辉夜凝发布了新的文献求助10
14秒前
可爱的函函应助Shrine采纳,获得10
15秒前
recovery应助Aprilapple采纳,获得10
16秒前
baonali发布了新的文献求助10
17秒前
123发布了新的文献求助30
17秒前
小晓发布了新的文献求助10
17秒前
科研通AI2S应助Andema采纳,获得10
17秒前
19秒前
19秒前
22秒前
22秒前
24秒前
李健应助假发君采纳,获得10
25秒前
26秒前
KIORking发布了新的文献求助10
26秒前
落忆发布了新的文献求助10
26秒前
tengfei完成签到 ,获得积分10
26秒前
yinle发布了新的文献求助10
27秒前
27秒前
Ma发布了新的文献求助10
27秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174