Deep Learning for Automated Measurement of Hemorrhage and Perihematomal Edema in Supratentorial Intracerebral Hemorrhage

四分位间距 医学 脑出血 一致性 放射科 血肿 核医学 蛛网膜下腔出血 外科 内科学
作者
Rajat Dhar,Guido J Falcone,Yasheng Chen,Ali Hamzehloo,Elayna Kirsch,Rommell B Noche,Kilian Roth,Julián Acosta,Antonio José Ortiz Ruiz,Chia-Ling Phuah,Daniel Woo,Thomas M Gill,Kevin N Sheth,Lee J
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:51 (2): 648-651 被引量:44
标识
DOI:10.1161/strokeaha.119.027657
摘要

Background and Purpose— Volumes of hemorrhage and perihematomal edema (PHE) are well-established biomarkers of primary and secondary injury, respectively, in spontaneous intracerebral hemorrhage. An automated imaging pipeline capable of accurately and rapidly quantifying these biomarkers would facilitate large cohort studies evaluating underlying mechanisms of injury. Methods— Regions of hemorrhage and PHE were manually delineated on computed tomography scans of patients enrolled in 2 intracerebral hemorrhage studies. Manual ground-truth masks from the first cohort were used to train a fully convolutional neural network to segment images into hemorrhage and PHE. The primary outcome was automated-versus-human concordance in hemorrhage and PHE volumes. The secondary outcome was voxel-by-voxel overlap of segmentations, quantified by the Dice similarity coefficient (DSC). Algorithm performance was validated on 84 scans from the second study. Results— Two hundred twenty-four scans from 124 patients with supratentorial intracerebral hemorrhage were used for algorithm derivation. Median volumes were 18 mL (interquartile range, 8–43) for hemorrhage and 12 mL (interquartile range, 5–30) for PHE. Concordance was excellent (0.96) for automated quantification of hemorrhage and good (0.81) for PHE, with DSC of 0.90 (interquartile range, 0.85–0.93) and 0.54 (0.39–0.65), respectively. External validation confirmed algorithm accuracy for hemorrhage (concordance 0.98, DSC 0.90) and PHE (concordance 0.90, DSC 0.55). This was comparable with the consistency observed between 2 human raters (DSC 0.90 for hemorrhage, 0.57 for PHE). Conclusions— We have developed a deep learning-based imaging algorithm capable of accurately measuring hemorrhage and PHE volumes. Rapid and consistent automated biomarker quantification may accelerate powerful and precise studies of disease biology in large cohorts of intracerebral hemorrhage patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡图图完成签到,获得积分10
1秒前
睡觉大王完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
9秒前
玩命的十三完成签到 ,获得积分10
9秒前
寂寞的诗云完成签到,获得积分10
11秒前
我爱科研完成签到 ,获得积分10
11秒前
12秒前
Bin_Liu发布了新的文献求助10
13秒前
She完成签到,获得积分10
13秒前
16秒前
Raki完成签到,获得积分10
17秒前
22完成签到 ,获得积分10
17秒前
Echo_1995完成签到,获得积分10
20秒前
徐慕源完成签到,获得积分10
20秒前
able发布了新的文献求助10
21秒前
呜呜完成签到 ,获得积分10
22秒前
22秒前
CQ完成签到 ,获得积分10
23秒前
漂亮天真完成签到,获得积分10
24秒前
gmc完成签到 ,获得积分10
24秒前
怡然白竹完成签到 ,获得积分10
26秒前
懵懂的海露完成签到,获得积分10
30秒前
testz完成签到,获得积分10
32秒前
33秒前
一一一完成签到,获得积分10
36秒前
翊然甜周完成签到,获得积分10
36秒前
36秒前
zdnn完成签到,获得积分10
38秒前
TLDX发布了新的文献求助10
41秒前
鳄鱼蛋完成签到,获得积分10
42秒前
luwenxuan完成签到,获得积分10
42秒前
42秒前
奋斗跳跳糖完成签到,获得积分10
42秒前
小白加油完成签到 ,获得积分10
43秒前
43秒前
星辰大海应助大橙子采纳,获得10
43秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022