Deep Learning for Automated Measurement of Hemorrhage and Perihematomal Edema in Supratentorial Intracerebral Hemorrhage

四分位间距 医学 脑出血 一致性 放射科 血肿 核医学 蛛网膜下腔出血 外科 内科学
作者
Rajat Dhar,Guido J Falcone,Yasheng Chen,Ali Hamzehloo,Elayna Kirsch,Rommell B Noche,Kilian Roth,Julián Acosta,Antonio José Ortiz Ruiz,Chia-Ling Phuah,Daniel Woo,Thomas M Gill,Kevin N Sheth,Lee J
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:51 (2): 648-651 被引量:44
标识
DOI:10.1161/strokeaha.119.027657
摘要

Background and Purpose— Volumes of hemorrhage and perihematomal edema (PHE) are well-established biomarkers of primary and secondary injury, respectively, in spontaneous intracerebral hemorrhage. An automated imaging pipeline capable of accurately and rapidly quantifying these biomarkers would facilitate large cohort studies evaluating underlying mechanisms of injury. Methods— Regions of hemorrhage and PHE were manually delineated on computed tomography scans of patients enrolled in 2 intracerebral hemorrhage studies. Manual ground-truth masks from the first cohort were used to train a fully convolutional neural network to segment images into hemorrhage and PHE. The primary outcome was automated-versus-human concordance in hemorrhage and PHE volumes. The secondary outcome was voxel-by-voxel overlap of segmentations, quantified by the Dice similarity coefficient (DSC). Algorithm performance was validated on 84 scans from the second study. Results— Two hundred twenty-four scans from 124 patients with supratentorial intracerebral hemorrhage were used for algorithm derivation. Median volumes were 18 mL (interquartile range, 8–43) for hemorrhage and 12 mL (interquartile range, 5–30) for PHE. Concordance was excellent (0.96) for automated quantification of hemorrhage and good (0.81) for PHE, with DSC of 0.90 (interquartile range, 0.85–0.93) and 0.54 (0.39–0.65), respectively. External validation confirmed algorithm accuracy for hemorrhage (concordance 0.98, DSC 0.90) and PHE (concordance 0.90, DSC 0.55). This was comparable with the consistency observed between 2 human raters (DSC 0.90 for hemorrhage, 0.57 for PHE). Conclusions— We have developed a deep learning-based imaging algorithm capable of accurately measuring hemorrhage and PHE volumes. Rapid and consistent automated biomarker quantification may accelerate powerful and precise studies of disease biology in large cohorts of intracerebral hemorrhage patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助cxy采纳,获得10
1秒前
22完成签到,获得积分10
2秒前
chens627发布了新的文献求助30
2秒前
3秒前
鹿友菌完成签到,获得积分10
4秒前
研友_VZG7GZ应助hgzz采纳,获得10
4秒前
人机一号发布了新的文献求助10
4秒前
5秒前
冰与火完成签到,获得积分10
5秒前
Accept完成签到,获得积分10
6秒前
WJ发布了新的文献求助10
7秒前
ccx完成签到,获得积分20
7秒前
lhw驳回了赘婿应助
7秒前
hufan2441完成签到,获得积分10
8秒前
科研通AI2S应助pengjiejie采纳,获得10
8秒前
绿大暗发布了新的文献求助10
8秒前
8秒前
宋映梦完成签到 ,获得积分10
9秒前
Attention完成签到 ,获得积分10
9秒前
搜集达人应助何来宝采纳,获得10
9秒前
9秒前
steven完成签到 ,获得积分10
10秒前
彩虹云朵完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
13秒前
后山monkey发布了新的文献求助10
13秒前
lily发布了新的文献求助10
14秒前
14秒前
14秒前
FF完成签到 ,获得积分10
15秒前
15秒前
16秒前
juzi完成签到,获得积分10
18秒前
hufan2441发布了新的文献求助10
18秒前
杨志坚发布了新的文献求助10
19秒前
宫礼坤发布了新的文献求助10
19秒前
万事顺遂发布了新的文献求助10
19秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149723
求助须知:如何正确求助?哪些是违规求助? 2800743
关于积分的说明 7841670
捐赠科研通 2458302
什么是DOI,文献DOI怎么找? 1308386
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706