亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning in clinical natural language processing: a methodical review

人工智能 自然语言处理 计算机科学 深度学习 背景(考古学) 命名实体识别 信息抽取 文字2vec 关系抽取 答疑 生物医学文本挖掘 自然语言 情报检索 机器学习 文本挖掘 管理 经济 嵌入 古生物学 生物 任务(项目管理)
作者
Stephen Wu,Kirk Roberts,Sushmita Datta,Jingcheng Du,Zongcheng Ji,Yuqi Si,Sarvesh Soni,Qiong Wang,Qiang Wei,Yang Xiang,Bo Zhao,Hua Xu
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (3): 457-470 被引量:240
标识
DOI:10.1093/jamia/ocz200
摘要

Abstract Objective This article methodically reviews the literature on deep learning (DL) for natural language processing (NLP) in the clinical domain, providing quantitative analysis to answer 3 research questions concerning methods, scope, and context of current research. Materials and Methods We searched MEDLINE, EMBASE, Scopus, the Association for Computing Machinery Digital Library, and the Association for Computational Linguistics Anthology for articles using DL-based approaches to NLP problems in electronic health records. After screening 1,737 articles, we collected data on 25 variables across 212 papers. Results DL in clinical NLP publications more than doubled each year, through 2018. Recurrent neural networks (60.8%) and word2vec embeddings (74.1%) were the most popular methods; the information extraction tasks of text classification, named entity recognition, and relation extraction were dominant (89.2%). However, there was a “long tail” of other methods and specific tasks. Most contributions were methodological variants or applications, but 20.8% were new methods of some kind. The earliest adopters were in the NLP community, but the medical informatics community was the most prolific. Discussion Our analysis shows growing acceptance of deep learning as a baseline for NLP research, and of DL-based NLP in the medical community. A number of common associations were substantiated (eg, the preference of recurrent neural networks for sequence-labeling named entity recognition), while others were surprisingly nuanced (eg, the scarcity of French language clinical NLP with deep learning). Conclusion Deep learning has not yet fully penetrated clinical NLP and is growing rapidly. This review highlighted both the popular and unique trends in this active field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
木子给木子的求助进行了留言
38秒前
43秒前
NPC发布了新的文献求助50
50秒前
学术小白完成签到,获得积分10
1分钟前
jasonjiang完成签到 ,获得积分10
1分钟前
1分钟前
勤恳水风发布了新的文献求助10
2分钟前
2分钟前
zzyh307完成签到 ,获得积分0
2分钟前
今后应助砂砾采纳,获得10
2分钟前
小耳朵完成签到,获得积分10
2分钟前
Jj发布了新的文献求助10
3分钟前
3分钟前
砂砾发布了新的文献求助10
3分钟前
嗯哼应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助xll采纳,获得10
3分钟前
3分钟前
3分钟前
00发布了新的文献求助10
3分钟前
科研通AI2S应助wook采纳,获得10
3分钟前
00完成签到,获得积分20
4分钟前
4分钟前
xll发布了新的文献求助10
4分钟前
wook完成签到,获得积分10
4分钟前
xll完成签到,获得积分10
4分钟前
4分钟前
Who发布了新的文献求助10
4分钟前
洛洛大方应助Who采纳,获得10
4分钟前
5分钟前
5分钟前
热情依白应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
iii完成签到 ,获得积分10
5分钟前
6分钟前
Crh完成签到,获得积分10
6分钟前
Hands完成签到 ,获得积分10
6分钟前
洛洛大方应助Crh采纳,获得10
6分钟前
故意的洋葱关注了科研通微信公众号
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307378
求助须知:如何正确求助?哪些是违规求助? 2941022
关于积分的说明 8500196
捐赠科研通 2615407
什么是DOI,文献DOI怎么找? 1428836
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648443