Deep learning in clinical natural language processing: a methodical review

人工智能 自然语言处理 计算机科学 深度学习 背景(考古学) 命名实体识别 信息抽取 文字2vec 关系抽取 情报检索 机器学习 生物 古生物学 嵌入 经济 管理 任务(项目管理)
作者
Stephen Wu,Kirk Roberts,Surabhi Datta,Jingcheng Du,Zongcheng Ji,Yuqi Si,Sarvesh Soni,Qiong Wang,Qiang Wei,Yang Xiang,Bo Zhao,Hua Xu
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (3): 457-470 被引量:385
标识
DOI:10.1093/jamia/ocz200
摘要

Abstract Objective This article methodically reviews the literature on deep learning (DL) for natural language processing (NLP) in the clinical domain, providing quantitative analysis to answer 3 research questions concerning methods, scope, and context of current research. Materials and Methods We searched MEDLINE, EMBASE, Scopus, the Association for Computing Machinery Digital Library, and the Association for Computational Linguistics Anthology for articles using DL-based approaches to NLP problems in electronic health records. After screening 1,737 articles, we collected data on 25 variables across 212 papers. Results DL in clinical NLP publications more than doubled each year, through 2018. Recurrent neural networks (60.8%) and word2vec embeddings (74.1%) were the most popular methods; the information extraction tasks of text classification, named entity recognition, and relation extraction were dominant (89.2%). However, there was a “long tail” of other methods and specific tasks. Most contributions were methodological variants or applications, but 20.8% were new methods of some kind. The earliest adopters were in the NLP community, but the medical informatics community was the most prolific. Discussion Our analysis shows growing acceptance of deep learning as a baseline for NLP research, and of DL-based NLP in the medical community. A number of common associations were substantiated (eg, the preference of recurrent neural networks for sequence-labeling named entity recognition), while others were surprisingly nuanced (eg, the scarcity of French language clinical NLP with deep learning). Conclusion Deep learning has not yet fully penetrated clinical NLP and is growing rapidly. This review highlighted both the popular and unique trends in this active field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助小蜗牛采纳,获得30
刚刚
深情安青应助ll采纳,获得10
刚刚
阔达紫青应助AliHamid采纳,获得10
刚刚
sll发布了新的文献求助10
刚刚
1秒前
乐观道之完成签到,获得积分10
1秒前
科研通AI5应助ln采纳,获得10
1秒前
1秒前
czl发布了新的文献求助10
2秒前
天天快乐应助111采纳,获得10
2秒前
丂枧完成签到 ,获得积分10
2秒前
yidiao007完成签到,获得积分20
2秒前
3秒前
爆米花应助ComeOn采纳,获得10
3秒前
4秒前
5秒前
6秒前
冯亚茹发布了新的文献求助10
7秒前
7秒前
7秒前
端庄大白完成签到 ,获得积分10
8秒前
qinkoko完成签到,获得积分10
9秒前
活泼的牛青完成签到 ,获得积分10
10秒前
GeneYang完成签到 ,获得积分10
10秒前
10秒前
11秒前
dengdengdeng发布了新的文献求助10
11秒前
shionn发布了新的文献求助10
11秒前
ink发布了新的文献求助10
12秒前
爆米花应助四十四次日落采纳,获得10
12秒前
mumu三应助yuhanz采纳,获得10
13秒前
Lucas应助jindou采纳,获得10
13秒前
13秒前
FF完成签到 ,获得积分10
13秒前
14秒前
CodeCraft应助nong12123采纳,获得10
14秒前
川上富江完成签到 ,获得积分10
15秒前
15秒前
Godzilla完成签到,获得积分10
17秒前
朴实的垣完成签到,获得积分10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774200
求助须知:如何正确求助?哪些是违规求助? 3319877
关于积分的说明 10197394
捐赠科研通 3034433
什么是DOI,文献DOI怎么找? 1665030
邀请新用户注册赠送积分活动 796533
科研通“疑难数据库(出版商)”最低求助积分说明 757510