类固醇生成急性调节蛋白
男科
颗粒细胞
生物
细胞周期
卵泡
周期素D2抗原
卵母细胞
卵巢
内分泌学
基因表达
内科学
化学
细胞生物学
细胞凋亡
胚胎
细胞周期蛋白
基因
遗传学
医学
作者
Elsa Labrune,Pauline Jaeger,Claire Santamaria,Cyrielle Fournier,Mehdi Benchaïb,Muriel Rabilloud,Bruno Salle,Jacqueline Lornage
出处
期刊:Tissue Engineering Part C-methods
[Mary Ann Liebert]
日期:2020-05-01
卷期号:26 (5): 276-285
被引量:11
标识
DOI:10.1089/ten.tec.2020.0063
摘要
Objective: To evaluate a vitrification protocol from histology to gene expression to slow freezing. Methods: Ovaries from 12 prepubertal ewes. The same ovary was cut into fragments, studied fresh, frozen, and vitrified. Follicle morphology by hematoxylin-eosin-safran staining, vitality by Trypan Blue, and apoptosis by marking cleaved caspase-3 were studied. The expression of gene: anti-Müllerian hormone (AMH), cytochrome p450 family 11 subfamily A member 1 (CYP11A), and steroidogenic acute regulatory protein (STAR; granulosa cells); growth differentiation factor 9 (GDF9) and zona pellucida glycoprotein 3 (ZP3; oocytes); and cyclin D2 (CCND2) and cyclin-dependent kinase inhibitor 1A (CDKN1A; cell cycle regulation), was evaluated by reverse transcription quantitative polymerase chain reaction. Results: The slow freezing protocol had a significant negative impact on intact primordial follicles compared with fresh tissue (37.6% vs. 62.5%, p = 0.003). More intact follicles after vitrification were observed compared with slow freezing (p = 0.037). The apoptotic primordial follicles were similar after slow freezing and vitrification (12.6% vs. 13.9%). Concerning granulosa cell genes, slow freezing led to a trend toward overexpression of AMH messenger RNA (mRNA; p = 0.07); while vitrification led to a significant overexpression of CYP11A mRNA (p = 0.003), and a trend toward an overexpression of STAR mRNA (p = 0.06). Concerning oocyte genes, both techniques did not lead to a difference of GDF9 and ZP3 mRNA. Concerning cell cycle genes, slow freezing led to a significant underexpression of CCND2 (p = 0.04); while vitrification did not lead to a difference for CCND2 and CDKN1A mRNA. Conclusion: Vitrification preserved follicular morphology better than slow freezing and led to gene overexpressed, while slow freezing led to gene underexpressed. The preservation of female fertility and in particular the cryopreservation of ovarian tissue (OT) is a major public health issue aimed at improving the quality of life of patients after gonadotoxic treatments. The use of slow freezing of this OT, which is the reference technique, is not optimal due to tissue alteration. The alternative would be vitrification. This study compares these two techniques. We have highlighted that vitrification preserved follicular morphology better than slow freezing and led to gene overexpressed, while slow freezing led to gene underexpressed.
科研通智能强力驱动
Strongly Powered by AbleSci AI