支持向量机
回归
人工智能
循环神经网络
计算机科学
均方误差
神经影像学
人工神经网络
机器学习
模式识别(心理学)
回归分析
认知障碍
皮尔逊积矩相关系数
阿尔茨海默病
认知
疾病
统计
心理学
数学
神经科学
医学
病理
作者
Solale Tabarestani,Maryamossadat Aghili,Mehdi Shojaie,Christian Freytes,Mercedes Cabrerizo,Armando Barreto,Naphtali Rishe,Rosie E. Curiel,David Loewenstein,Ranjan Duara,Malek Adjouadi
出处
期刊:IEEE-EMBS International Conference on Biomedical and Health Informatics
日期:2019-05-01
被引量:21
标识
DOI:10.1109/bhi.2019.8834556
摘要
This paper proposes an implementation of Recurrent Neural Networks (RNNs) for (a) predicting future Mini-Mental State Examination (MMSE) scores in a longitudinal study and (b) deploying a multiclass multimodal neuroimaging classification process that involves three different known stages of Alzheimer's progression, cognitively normal (CN), Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD). This multimodal data is fed into two well-studied variations of the RNNs; Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The accuracy, F-score, sensitivity, and specificity of the models are reported for the classification task as well as the root mean square error (RMSE) and correlation coefficient for the regression task. The results demonstrate the superiority of the proposed model over state-of-the-art classification and regression techniques of Support Vector Machine (SVM), Support Vector Regression (SVR) and Ridge Regression.
科研通智能强力驱动
Strongly Powered by AbleSci AI