Diagnosis of Benign and Malignant Breast Lesions on DCE‐MRI by Using Radiomics and Deep Learning With Consideration of Peritumor Tissue

无线电技术 医学 人工智能 放射科 深度学习 最小边界框 恶性肿瘤 乳房磁振造影 分割 接收机工作特性 感兴趣区域 随机森林 计算机科学 乳腺癌 模式识别(心理学) 机器学习 病理 癌症 乳腺摄影术 图像(数学) 内科学
作者
Jiejie Zhou,Yang Zhang,Kai‐Ting Chang,Kyoung Eun Lee,Ouchen Wang,Jiance Li,Yezhi Lin,Zhifang Pan,Peter D. Chang,Daniel Chow,Meihao Wang,Min‐Ying Su
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:51 (3): 798-809 被引量:149
标识
DOI:10.1002/jmri.26981
摘要

Background Computer‐aided methods have been widely applied to diagnose lesions detected on breast MRI, but fully‐automatic diagnosis using deep learning is rarely reported. Purpose To evaluate the diagnostic accuracy of mass lesions using region of interest (ROI)‐based, radiomics and deep‐learning methods, by taking peritumor tissues into consideration. Study Type Retrospective. Population In all, 133 patients with histologically confirmed 91 malignant and 62 benign mass lesions for training (74 patients with 48 malignant and 26 benign lesions for testing). Field Strength/Sequence 3T, using the volume imaging for breast assessment (VIBRANT) dynamic contrast‐enhanced (DCE) sequence. Assessment 3D tumor segmentation was done automatically by using fuzzy‐C‐means algorithm with connected‐component labeling. A total of 99 texture and histogram parameters were calculated for each case, and 15 were selected using random forest to build a radiomics model. Deep learning was implemented using ResNet50, evaluated with 10‐fold crossvalidation. The tumor alone, smallest bounding box, and 1.2, 1.5, 2.0 times enlarged boxes were used as inputs. Statistical Tests The malignancy probability was calculated using each model, and the threshold of 0.5 was used to make a diagnosis. Results In the training dataset, the diagnostic accuracy was 76% using three ROI‐based parameters, 84% using the radiomics model, and 86% using ROI + radiomics model. In deep learning using the per‐slice basis, the area under the receiver operating characteristic (ROC) was comparable for tumor alone, smallest and 1.2 times box (AUC = 0.97‐0.99), which were significantly higher than 1.5 and 2.0 times box (AUC = 0.86 and 0.71, respectively). For per‐lesion diagnosis, the highest accuracy of 91% was achieved when using the smallest bounding box, and that decreased to 84% for tumor alone and 1.2 times box, and further to 73% for 1.5 times box and 69% for 2.0 times box. In the independent testing dataset, the per‐lesion diagnostic accuracy was also the highest when using the smallest bounding box, 89%. Data Conclusion Deep learning using ResNet50 achieved a high diagnostic accuracy. Using the smallest bounding box containing proximal peritumor tissue as input had higher accuracy compared to using tumor alone or larger boxes. Level of Evidence: 3 Technical Efficacy: Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xqing完成签到,获得积分10
刚刚
完美的鹤完成签到,获得积分10
刚刚
jin_strive完成签到,获得积分0
刚刚
缘分完成签到,获得积分10
1秒前
萌兰134完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
CYL07完成签到 ,获得积分10
2秒前
Archer完成签到,获得积分10
3秒前
3秒前
LJJ完成签到 ,获得积分10
3秒前
rayqiang完成签到,获得积分0
4秒前
susan完成签到 ,获得积分10
4秒前
4秒前
海东来应助科研通管家采纳,获得30
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
小美美完成签到 ,获得积分10
5秒前
5秒前
5秒前
安好发布了新的文献求助10
6秒前
7秒前
小马甲应助lhcshuang采纳,获得10
8秒前
李雯完成签到,获得积分10
8秒前
巫马沛春完成签到,获得积分10
8秒前
学术老6完成签到,获得积分10
9秒前
任性半凡完成签到,获得积分10
9秒前
wmuzhao发布了新的文献求助10
10秒前
hao完成签到,获得积分10
11秒前
大吴克发布了新的文献求助10
11秒前
犇骉发布了新的文献求助10
11秒前
泡芙完成签到,获得积分10
11秒前
不想太多发布了新的文献求助10
12秒前
tommmmmm15完成签到,获得积分10
12秒前
SSDlk发布了新的文献求助10
12秒前
黄瓜橙橙发布了新的文献求助10
14秒前
gk完成签到,获得积分10
14秒前
凡而不庸完成签到,获得积分10
15秒前
危机的慕卉完成签到 ,获得积分10
16秒前
骑驴追火箭完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027