Diagnosis of Benign and Malignant Breast Lesions on DCE‐MRI by Using Radiomics and Deep Learning With Consideration of Peritumor Tissue

无线电技术 医学 人工智能 放射科 深度学习 最小边界框 恶性肿瘤 乳房磁振造影 分割 接收机工作特性 感兴趣区域 随机森林 计算机科学 乳腺癌 模式识别(心理学) 机器学习 病理 癌症 乳腺摄影术 图像(数学) 内科学
作者
Jiejie Zhou,Yang Zhang,Kai‐Ting Chang,Kyoung Eun Lee,Ouchen Wang,Jiance Li,Yezhi Lin,Zhifang Pan,Peter D. Chang,Daniel Chow,Meihao Wang,Min‐Ying Su
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:51 (3): 798-809 被引量:149
标识
DOI:10.1002/jmri.26981
摘要

Background Computer‐aided methods have been widely applied to diagnose lesions detected on breast MRI, but fully‐automatic diagnosis using deep learning is rarely reported. Purpose To evaluate the diagnostic accuracy of mass lesions using region of interest (ROI)‐based, radiomics and deep‐learning methods, by taking peritumor tissues into consideration. Study Type Retrospective. Population In all, 133 patients with histologically confirmed 91 malignant and 62 benign mass lesions for training (74 patients with 48 malignant and 26 benign lesions for testing). Field Strength/Sequence 3T, using the volume imaging for breast assessment (VIBRANT) dynamic contrast‐enhanced (DCE) sequence. Assessment 3D tumor segmentation was done automatically by using fuzzy‐C‐means algorithm with connected‐component labeling. A total of 99 texture and histogram parameters were calculated for each case, and 15 were selected using random forest to build a radiomics model. Deep learning was implemented using ResNet50, evaluated with 10‐fold crossvalidation. The tumor alone, smallest bounding box, and 1.2, 1.5, 2.0 times enlarged boxes were used as inputs. Statistical Tests The malignancy probability was calculated using each model, and the threshold of 0.5 was used to make a diagnosis. Results In the training dataset, the diagnostic accuracy was 76% using three ROI‐based parameters, 84% using the radiomics model, and 86% using ROI + radiomics model. In deep learning using the per‐slice basis, the area under the receiver operating characteristic (ROC) was comparable for tumor alone, smallest and 1.2 times box (AUC = 0.97‐0.99), which were significantly higher than 1.5 and 2.0 times box (AUC = 0.86 and 0.71, respectively). For per‐lesion diagnosis, the highest accuracy of 91% was achieved when using the smallest bounding box, and that decreased to 84% for tumor alone and 1.2 times box, and further to 73% for 1.5 times box and 69% for 2.0 times box. In the independent testing dataset, the per‐lesion diagnostic accuracy was also the highest when using the smallest bounding box, 89%. Data Conclusion Deep learning using ResNet50 achieved a high diagnostic accuracy. Using the smallest bounding box containing proximal peritumor tissue as input had higher accuracy compared to using tumor alone or larger boxes. Level of Evidence: 3 Technical Efficacy: Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
曾经若枫完成签到,获得积分10
3秒前
南小琴发布了新的文献求助10
4秒前
寻123发布了新的文献求助10
4秒前
Cathy完成签到,获得积分10
4秒前
Iris完成签到,获得积分10
5秒前
果实发布了新的文献求助10
6秒前
jinxuan发布了新的文献求助10
7秒前
cocolu应助半江采纳,获得10
7秒前
脑洞疼应助白鸽鸽采纳,获得10
8秒前
cmuren99完成签到,获得积分10
10秒前
科研通AI2S应助bole采纳,获得10
10秒前
Orange应助小青采纳,获得10
11秒前
12秒前
12秒前
科目三应助果实采纳,获得10
13秒前
半江完成签到,获得积分10
15秒前
15秒前
16秒前
LZX完成签到 ,获得积分10
19秒前
20秒前
干净青亦发布了新的文献求助10
20秒前
21秒前
22秒前
pcr163应助科研通管家采纳,获得80
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
LLLJW应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
礼礼应助科研通管家采纳,获得10
23秒前
zl12345完成签到,获得积分10
23秒前
思源应助科研通管家采纳,获得10
23秒前
吴彦祖完成签到,获得积分20
25秒前
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329501
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594396
捐赠科研通 2637597
什么是DOI,文献DOI怎么找? 1443667
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656220