折射率
诺共振
光学
高光谱成像
折射法
表面等离子共振
共振(粒子物理)
材料科学
化学
物理
等离子体子
纳米技术
遥感
粒子物理学
地质学
纳米颗粒
作者
Silvia Romano,Maria Mangini,Erika Penzo,Stefano Cabrini,Anna Chiara De Luca,Ivo Rendina,Vito Mocella,Gianluigi Zito
出处
期刊:ACS Nano
[American Chemical Society]
日期:2020-11-10
卷期号:14 (11): 15417-15427
被引量:86
标识
DOI:10.1021/acsnano.0c06050
摘要
Herein, we demonstrate a cavity-enhanced hyperspectral refractometric imaging using an all-dielectric photonic crystal slab (PhCS). Our approach takes advantage of the synergy between two mechanisms, surface-enhanced fluorescence (SEF) and refractometric sensing, both based on high-Q resonances in proximity of bound states in the continuum (BICs). The enhanced local optical field of the first resonance amplifies of 2 orders of magnitude the SEF emission of a probe dye. Simultaneously, hyperspectral refractometric sensing, based on Fano interference between second mode and fluorescence emission, is used for mapping the spatially variant refractive index produced by the specimen on the PhCS. The spectral matching between first resonance and input laser is modulated by the specimen local refractive index, and thanks to the calibrated dependence with the spectral shift of the Fano resonance, the cavity tuning is used to achieve an enhanced correlative refractometric map with a resolution of 10–5 RIU within femtoliter-scale sampling volumes. This is experimentally applied also on live prostate cancer cells grown on the PhCS, reconstructing enhanced surface refractive index images at the single-cell level. This dual mechanism of quasi-BIC spatially variant gain tracked by quasi-BIC refractometric sensing provides a correlative imaging platform that can find application in many fields for monitoring physical and biochemical processes, such as molecular interactions, chemical reactions, or surface cell analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI