Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations

自编码 药品 计算机科学 图形 疾病 机制(生物学) 深度学习 节点(物理) 人工智能 机器学习 数据挖掘 理论计算机科学 医学 药理学 认识论 工程类 哲学 病理 结构工程
作者
Ping Xuan,Ling Gao,Nan Sheng,Tiangang Zhang,Toshiya Nakaguchi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1793-1804 被引量:49
标识
DOI:10.1109/jbhi.2020.3039502
摘要

Predicting novel uses for approved drugs helps in reducing the costs of drug development and facilitates the development process. Most of previous methods focused on the multi-source data related to drugs and diseases to predict the candidate associations between drugs and diseases. There are multiple kinds of similarities between drugs, and these similarities reflect how similar two drugs are from the different views, whereas most of the previous methods failed to deeply integrate these similarities. In addition, the topology structures of the multiple drug-disease heterogeneous networks constructed by using the different kinds of drug similarities are not fully exploited. We therefore propose GFPred, a method based on a graph convolutional autoencoder and a fully-connected autoencoder with an attention mechanism, to predict drug-related diseases. GFPred integrates drug-disease associations, disease similarities, three kinds of drug similarities and attributes of the drug nodes. Three drug-disease heterogeneous networks are constructed based on the different kinds of drug similarities. We construct a graph convolutional autoencoder module, and integrate the attributes of the drug and disease nodes in each network to learn the topology representations of each drug node and disease node. As the different kinds of drug attributes contribute differently to the prediction of drug-disease associations, we construct an attribute-level attention mechanism. A fully-connected autoencoder module is established to learn the attribute representations of the drug and disease nodes. Finally, the original features of the drug-disease node pairs are also important auxiliary information for their association prediction. A combined strategy based on a convolutional neural network is proposed to fully integrate the topology representations, the attribute representations, and the original features of the drug-disease pairs. The ablation studies showed the contributions of data related to three types of drug attributes. Comparison with other methods confirmed that GFPred achieved better performance than several state-of-the-art prediction methods. In particular, case studies confirmed that GFPred is able to retrieve more actual drug-disease associations in the top k part of the prediction results. It is helpful for biologists to discover real associations by wet-lab experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得30
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
Lengbo发布了新的文献求助10
2秒前
LJ完成签到,获得积分10
2秒前
xxxxx完成签到,获得积分10
2秒前
2秒前
如果发布了新的文献求助10
2秒前
dal完成签到 ,获得积分10
3秒前
3秒前
3秒前
biubiu26发布了新的文献求助10
4秒前
闪闪魔镜发布了新的文献求助10
4秒前
4秒前
elous发布了新的文献求助10
5秒前
LJ发布了新的文献求助10
6秒前
6秒前
7秒前
502504811发布了新的文献求助10
7秒前
7秒前
8秒前
深情安青应助hush采纳,获得10
8秒前
孙涛发布了新的文献求助10
8秒前
文武兼备发布了新的文献求助10
9秒前
9秒前
9秒前
justdoit完成签到,获得积分20
9秒前
耍酷的花卷完成签到 ,获得积分10
10秒前
11秒前
张顺龙完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
ali8ba发布了新的文献求助10
13秒前
DR发布了新的文献求助10
13秒前
Ferry完成签到 ,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265116
求助须知:如何正确求助?哪些是违规求助? 4425209
关于积分的说明 13775716
捐赠科研通 4300491
什么是DOI,文献DOI怎么找? 2359831
邀请新用户注册赠送积分活动 1355852
关于科研通互助平台的介绍 1317181