已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations

自编码 药品 计算机科学 图形 疾病 机制(生物学) 深度学习 节点(物理) 人工智能 机器学习 数据挖掘 理论计算机科学 医学 药理学 认识论 工程类 哲学 病理 结构工程
作者
Ping Xuan,Ling Gao,Nan Sheng,Tiangang Zhang,Toshiya Nakaguchi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1793-1804 被引量:49
标识
DOI:10.1109/jbhi.2020.3039502
摘要

Predicting novel uses for approved drugs helps in reducing the costs of drug development and facilitates the development process. Most of previous methods focused on the multi-source data related to drugs and diseases to predict the candidate associations between drugs and diseases. There are multiple kinds of similarities between drugs, and these similarities reflect how similar two drugs are from the different views, whereas most of the previous methods failed to deeply integrate these similarities. In addition, the topology structures of the multiple drug-disease heterogeneous networks constructed by using the different kinds of drug similarities are not fully exploited. We therefore propose GFPred, a method based on a graph convolutional autoencoder and a fully-connected autoencoder with an attention mechanism, to predict drug-related diseases. GFPred integrates drug-disease associations, disease similarities, three kinds of drug similarities and attributes of the drug nodes. Three drug-disease heterogeneous networks are constructed based on the different kinds of drug similarities. We construct a graph convolutional autoencoder module, and integrate the attributes of the drug and disease nodes in each network to learn the topology representations of each drug node and disease node. As the different kinds of drug attributes contribute differently to the prediction of drug-disease associations, we construct an attribute-level attention mechanism. A fully-connected autoencoder module is established to learn the attribute representations of the drug and disease nodes. Finally, the original features of the drug-disease node pairs are also important auxiliary information for their association prediction. A combined strategy based on a convolutional neural network is proposed to fully integrate the topology representations, the attribute representations, and the original features of the drug-disease pairs. The ablation studies showed the contributions of data related to three types of drug attributes. Comparison with other methods confirmed that GFPred achieved better performance than several state-of-the-art prediction methods. In particular, case studies confirmed that GFPred is able to retrieve more actual drug-disease associations in the top k part of the prediction results. It is helpful for biologists to discover real associations by wet-lab experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qzp完成签到 ,获得积分10
刚刚
星星完成签到 ,获得积分10
刚刚
dht完成签到,获得积分10
2秒前
不安的松完成签到 ,获得积分10
3秒前
科目三应助科研通管家采纳,获得30
3秒前
无幻完成签到 ,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
5秒前
gwh完成签到 ,获得积分10
5秒前
ccs完成签到,获得积分10
6秒前
Son4904发布了新的文献求助10
8秒前
何my完成签到 ,获得积分10
10秒前
田様应助ioo采纳,获得10
11秒前
mmyhn完成签到,获得积分10
12秒前
小丸子完成签到,获得积分10
13秒前
13秒前
火山完成签到 ,获得积分10
14秒前
尹静涵完成签到 ,获得积分10
14秒前
立夏完成签到 ,获得积分10
15秒前
小羊完成签到,获得积分10
15秒前
16秒前
耶耶完成签到 ,获得积分10
17秒前
Son4904完成签到,获得积分10
18秒前
Wuyiqin完成签到,获得积分10
19秒前
Criminology34举报鸽子求助涉嫌违规
20秒前
20秒前
清浅完成签到 ,获得积分10
21秒前
小雨快跑发布了新的文献求助10
21秒前
李健应助马颗粒采纳,获得30
21秒前
Akim应助wop111采纳,获得10
22秒前
土豆你个西红柿完成签到 ,获得积分10
23秒前
完美天蓝完成签到 ,获得积分10
24秒前
litieniu完成签到 ,获得积分10
25秒前
明月朗晴完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418128
求助须知:如何正确求助?哪些是违规求助? 4533794
关于积分的说明 14142517
捐赠科研通 4450087
什么是DOI,文献DOI怎么找? 2441101
邀请新用户注册赠送积分活动 1432850
关于科研通互助平台的介绍 1410054