Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations

自编码 药品 计算机科学 图形 疾病 机制(生物学) 深度学习 节点(物理) 人工智能 机器学习 数据挖掘 理论计算机科学 医学 药理学 哲学 结构工程 认识论 病理 工程类
作者
Ping Xuan,Ling Gao,Nan Sheng,Tiangang Zhang,Toshiya Nakaguchi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1793-1804 被引量:49
标识
DOI:10.1109/jbhi.2020.3039502
摘要

Predicting novel uses for approved drugs helps in reducing the costs of drug development and facilitates the development process. Most of previous methods focused on the multi-source data related to drugs and diseases to predict the candidate associations between drugs and diseases. There are multiple kinds of similarities between drugs, and these similarities reflect how similar two drugs are from the different views, whereas most of the previous methods failed to deeply integrate these similarities. In addition, the topology structures of the multiple drug-disease heterogeneous networks constructed by using the different kinds of drug similarities are not fully exploited. We therefore propose GFPred, a method based on a graph convolutional autoencoder and a fully-connected autoencoder with an attention mechanism, to predict drug-related diseases. GFPred integrates drug-disease associations, disease similarities, three kinds of drug similarities and attributes of the drug nodes. Three drug-disease heterogeneous networks are constructed based on the different kinds of drug similarities. We construct a graph convolutional autoencoder module, and integrate the attributes of the drug and disease nodes in each network to learn the topology representations of each drug node and disease node. As the different kinds of drug attributes contribute differently to the prediction of drug-disease associations, we construct an attribute-level attention mechanism. A fully-connected autoencoder module is established to learn the attribute representations of the drug and disease nodes. Finally, the original features of the drug-disease node pairs are also important auxiliary information for their association prediction. A combined strategy based on a convolutional neural network is proposed to fully integrate the topology representations, the attribute representations, and the original features of the drug-disease pairs. The ablation studies showed the contributions of data related to three types of drug attributes. Comparison with other methods confirmed that GFPred achieved better performance than several state-of-the-art prediction methods. In particular, case studies confirmed that GFPred is able to retrieve more actual drug-disease associations in the top k part of the prediction results. It is helpful for biologists to discover real associations by wet-lab experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PACEPANG发布了新的文献求助20
1秒前
2秒前
蓉城完成签到,获得积分10
3秒前
ira发布了新的文献求助10
4秒前
5秒前
Akim应助科研小白采纳,获得10
7秒前
蓉城发布了新的文献求助30
7秒前
8秒前
琉璃完成签到,获得积分10
9秒前
Antil完成签到 ,获得积分10
10秒前
石头发布了新的文献求助10
10秒前
万能图书馆应助PACEPANG采纳,获得10
13秒前
汉堡包应助蓉城采纳,获得10
15秒前
ccm应助积极的中蓝采纳,获得10
17秒前
石头完成签到,获得积分10
17秒前
今后应助张平一采纳,获得30
17秒前
19秒前
20秒前
无奈完成签到,获得积分10
20秒前
CipherSage应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
XM发布了新的文献求助10
24秒前
无花果应助科研通管家采纳,获得10
24秒前
24秒前
浮游应助科研通管家采纳,获得10
24秒前
25秒前
浮游应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
不想说完成签到,获得积分10
26秒前
26秒前
欣喜雅香发布了新的文献求助10
26秒前
27秒前
colin发布了新的文献求助10
28秒前
慵懒的树完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123717
求助须知:如何正确求助?哪些是违规求助? 4328095
关于积分的说明 13486321
捐赠科研通 4162431
什么是DOI,文献DOI怎么找? 2281452
邀请新用户注册赠送积分活动 1282864
关于科研通互助平台的介绍 1221964