Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations

自编码 药品 计算机科学 图形 疾病 机制(生物学) 深度学习 节点(物理) 人工智能 机器学习 数据挖掘 理论计算机科学 医学 药理学 认识论 工程类 哲学 病理 结构工程
作者
Ping Xuan,Ling Gao,Nan Sheng,Tiangang Zhang,Toshiya Nakaguchi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1793-1804 被引量:49
标识
DOI:10.1109/jbhi.2020.3039502
摘要

Predicting novel uses for approved drugs helps in reducing the costs of drug development and facilitates the development process. Most of previous methods focused on the multi-source data related to drugs and diseases to predict the candidate associations between drugs and diseases. There are multiple kinds of similarities between drugs, and these similarities reflect how similar two drugs are from the different views, whereas most of the previous methods failed to deeply integrate these similarities. In addition, the topology structures of the multiple drug-disease heterogeneous networks constructed by using the different kinds of drug similarities are not fully exploited. We therefore propose GFPred, a method based on a graph convolutional autoencoder and a fully-connected autoencoder with an attention mechanism, to predict drug-related diseases. GFPred integrates drug-disease associations, disease similarities, three kinds of drug similarities and attributes of the drug nodes. Three drug-disease heterogeneous networks are constructed based on the different kinds of drug similarities. We construct a graph convolutional autoencoder module, and integrate the attributes of the drug and disease nodes in each network to learn the topology representations of each drug node and disease node. As the different kinds of drug attributes contribute differently to the prediction of drug-disease associations, we construct an attribute-level attention mechanism. A fully-connected autoencoder module is established to learn the attribute representations of the drug and disease nodes. Finally, the original features of the drug-disease node pairs are also important auxiliary information for their association prediction. A combined strategy based on a convolutional neural network is proposed to fully integrate the topology representations, the attribute representations, and the original features of the drug-disease pairs. The ablation studies showed the contributions of data related to three types of drug attributes. Comparison with other methods confirmed that GFPred achieved better performance than several state-of-the-art prediction methods. In particular, case studies confirmed that GFPred is able to retrieve more actual drug-disease associations in the top k part of the prediction results. It is helpful for biologists to discover real associations by wet-lab experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
FashionBoy应助要减肥代双采纳,获得10
刚刚
1秒前
宫城百事顺完成签到,获得积分10
2秒前
2秒前
陈瑞发布了新的文献求助10
2秒前
SciGPT应助Simo采纳,获得10
3秒前
3秒前
Will发布了新的文献求助10
4秒前
Rjy发布了新的文献求助10
4秒前
123456发布了新的文献求助10
4秒前
4秒前
AIO发布了新的文献求助10
4秒前
欢呼的念瑶完成签到,获得积分10
5秒前
5秒前
徐木木发布了新的文献求助10
6秒前
Lee发布了新的文献求助30
6秒前
min完成签到,获得积分10
6秒前
6秒前
HX发布了新的文献求助10
6秒前
6秒前
斯文败类应助默默的橘子采纳,获得10
6秒前
万能图书馆应助Rngf_eeei采纳,获得10
7秒前
Tera完成签到,获得积分10
7秒前
meo应助PMME采纳,获得10
7秒前
最最完成签到,获得积分10
8秒前
zhangyapeng完成签到,获得积分10
8秒前
陈末应助雪山飞龙采纳,获得10
8秒前
halabouqii发布了新的文献求助10
9秒前
9秒前
10秒前
浅念关注了科研通微信公众号
10秒前
咖褐发布了新的文献求助10
10秒前
祖诗云完成签到,获得积分10
10秒前
小蘑菇应助璟晔采纳,获得10
11秒前
zybbb发布了新的文献求助10
11秒前
魏京京完成签到,获得积分10
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572