亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations

自编码 药品 计算机科学 图形 疾病 机制(生物学) 深度学习 节点(物理) 人工智能 机器学习 数据挖掘 理论计算机科学 医学 药理学 认识论 工程类 哲学 病理 结构工程
作者
Ping Xuan,Ling Gao,Nan Sheng,Tiangang Zhang,Toshiya Nakaguchi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (5): 1793-1804 被引量:41
标识
DOI:10.1109/jbhi.2020.3039502
摘要

Predicting novel uses for approved drugs helps in reducing the costs of drug development and facilitates the development process. Most of previous methods focused on the multi-source data related to drugs and diseases to predict the candidate associations between drugs and diseases. There are multiple kinds of similarities between drugs, and these similarities reflect how similar two drugs are from the different views, whereas most of the previous methods failed to deeply integrate these similarities. In addition, the topology structures of the multiple drug-disease heterogeneous networks constructed by using the different kinds of drug similarities are not fully exploited. We therefore propose GFPred, a method based on a graph convolutional autoencoder and a fully-connected autoencoder with an attention mechanism, to predict drug-related diseases. GFPred integrates drug-disease associations, disease similarities, three kinds of drug similarities and attributes of the drug nodes. Three drug-disease heterogeneous networks are constructed based on the different kinds of drug similarities. We construct a graph convolutional autoencoder module, and integrate the attributes of the drug and disease nodes in each network to learn the topology representations of each drug node and disease node. As the different kinds of drug attributes contribute differently to the prediction of drug-disease associations, we construct an attribute-level attention mechanism. A fully-connected autoencoder module is established to learn the attribute representations of the drug and disease nodes. Finally, the original features of the drug-disease node pairs are also important auxiliary information for their association prediction. A combined strategy based on a convolutional neural network is proposed to fully integrate the topology representations, the attribute representations, and the original features of the drug-disease pairs. The ablation studies showed the contributions of data related to three types of drug attributes. Comparison with other methods confirmed that GFPred achieved better performance than several state-of-the-art prediction methods. In particular, case studies confirmed that GFPred is able to retrieve more actual drug-disease associations in the top k part of the prediction results. It is helpful for biologists to discover real associations by wet-lab experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白鸽应助KongHN采纳,获得30
9秒前
初雪平寒发布了新的文献求助10
10秒前
JXDeng完成签到,获得积分10
12秒前
KongHN完成签到,获得积分10
23秒前
景辣条应助碧蓝太英采纳,获得30
25秒前
26秒前
兴奋元灵完成签到 ,获得积分10
30秒前
zzzyyy应助风止采纳,获得10
31秒前
顺利芸发布了新的文献求助10
34秒前
顺利芸完成签到,获得积分20
47秒前
50秒前
zhiyu发布了新的文献求助10
55秒前
55秒前
乐乐乐乐乐乐应助顺利芸采纳,获得10
57秒前
完美的海完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
shenhai发布了新的文献求助10
1分钟前
优雅苑睐完成签到,获得积分10
1分钟前
1分钟前
Lucifer完成签到,获得积分10
1分钟前
1分钟前
kk_1315完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得30
1分钟前
景辣条应助结实的海白采纳,获得10
1分钟前
Mia发布了新的文献求助10
1分钟前
1分钟前
大学生完成签到 ,获得积分10
1分钟前
13504544355完成签到 ,获得积分10
1分钟前
zhiyu完成签到,获得积分10
1分钟前
2分钟前
step_stone完成签到,获得积分10
2分钟前
felix发布了新的文献求助10
2分钟前
爱吃蒸蛋完成签到,获得积分10
2分钟前
脑洞疼应助打地鼠工人采纳,获得10
2分钟前
星辰大海应助Jackylee采纳,获得10
2分钟前
2分钟前
泡面小猪发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989