A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory

更安全的 过程(计算) 加速度 主动安全 计算机科学 车辆动力学 模拟 领域(数学) 汽车工程 工程类 数学 计算机安全 经典力学 操作系统 物理 纯数学
作者
Linheng Li,Jing Gan,Kun Zhou,Qing Xu,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:559: 125039-125039 被引量:66
标识
DOI:10.1016/j.physa.2020.125039
摘要

In order to adequately characterize the driving risks that vehicles face during the lane change process and ensure that vehicles perform safer lane change decisions, a vehicle lane change model based on the safe potential field theory is established in this paper. Firstly, the driving risk encountered during the vehicle lane-changing process is evaluated, and the spatial distribution of the safety potential field under different motion states during the vehicle driving process is given based on the potential field theory. Secondly, the critical distances between vehicles at the end of the lane-change process are summarized according to the distribution of different safety potential fields of relevant vehicles during the lane change process. Compared with the traditional critical distance calculation model, the method proposed in this paper can dynamically characterize the trend of the critical distance of the vehicle under different velocity and acceleration conditions. Based on this, according to the characteristics that various types of vehicle movement status can be perceived in real-time under the CAVs environment, the safety-critical time required for lane change under various motion states of the vehicle is summarized, and the minimum safety distance lane change model based on the safety potential field theory is finally established. Numerical simulation analysis of the model shows that the model can characterize the effects of various motion parameters on the lane change results. The research results can provide some theoretical support for related researches such as vehicle lane changing, vehicle autonomous driving, and vehicle group optimization control in the intelligent networked environment in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Watson完成签到,获得积分10
2秒前
小巧的香氛完成签到 ,获得积分10
2秒前
new_vision完成签到,获得积分10
2秒前
slx0410完成签到,获得积分10
4秒前
一禅完成签到 ,获得积分10
5秒前
小白完成签到,获得积分10
8秒前
詹姆斯哈登完成签到,获得积分10
8秒前
flac完成签到,获得积分10
9秒前
马麻薯完成签到,获得积分10
10秒前
俭朴的寇完成签到,获得积分10
12秒前
12秒前
徐什么宝完成签到,获得积分10
13秒前
xie完成签到 ,获得积分10
14秒前
子平完成签到 ,获得积分10
14秒前
chuxin完成签到,获得积分10
15秒前
li完成签到,获得积分10
16秒前
Likz完成签到,获得积分10
17秒前
hhh发布了新的文献求助30
17秒前
lvyan完成签到,获得积分10
17秒前
17秒前
在水一方完成签到 ,获得积分10
18秒前
生而追梦不止完成签到,获得积分10
20秒前
积极冰淇淋完成签到,获得积分10
21秒前
Tiliar完成签到,获得积分10
21秒前
yh完成签到,获得积分10
22秒前
充电宝应助义气笑容采纳,获得10
24秒前
墨染完成签到,获得积分10
24秒前
雨下着的坡道完成签到,获得积分10
25秒前
whatever应助积极冰淇淋采纳,获得10
26秒前
日央完成签到,获得积分10
26秒前
CSPC001完成签到,获得积分10
27秒前
27秒前
研友_QQC完成签到,获得积分10
27秒前
温润如玉坤完成签到,获得积分10
27秒前
殷勤的梦秋完成签到,获得积分10
28秒前
勤劳绿毛龟完成签到,获得积分10
28秒前
凶狠的盛男完成签到 ,获得积分10
28秒前
nwpuwangbo完成签到,获得积分10
29秒前
cesar完成签到,获得积分10
29秒前
sunshine应助科研通管家采纳,获得10
29秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3347143
求助须知:如何正确求助?哪些是违规求助? 2973591
关于积分的说明 8660120
捐赠科研通 2654162
什么是DOI,文献DOI怎么找? 1453490
科研通“疑难数据库(出版商)”最低求助积分说明 672930
邀请新用户注册赠送积分活动 662998