Complement factors and alpha‐fetoprotein as biomarkers for noninvasive prenatal diagnosis of neural tube defects

接收机工作特性 医学 生物标志物 神经管 支持向量机 补语(音乐) 假阳性率 病理 生物信息学 内科学 生物 人工智能 计算机科学 遗传学 基因 表型 互补 胚胎
作者
Naixuan Dong,Hui Gu,Dan Liu,Xiaowei Wei,Wei Ma,Ling Ma,Yusi Liu,Yanfu Wang,Shanshan Jia,Jieting Huang,Chenfei Wang,Xuan He,Tianchu Huang,Yiwen He,Qiang Zhang,Dong An,Yuzuo Bai,Zhengwei Yuan
出处
期刊:Annals of the New York Academy of Sciences [Wiley]
卷期号:1478 (1): 75-91 被引量:17
标识
DOI:10.1111/nyas.14443
摘要

Abstract Neural tube defects (NTDs) are serious congenital malformations. In this study, we aimed to identify more specific and sensitive maternal serum biomarkers for noninvasive NTD screenings. We collected serum from 37 pregnant women carrying fetuses with NTDs and 38 pregnant women carrying normal fetuses. Isobaric tags for relative and absolute quantitation were conducted for differential proteomic analysis, and an enzyme‐linked immunosorbent assay was used to validate the results. We then used a support vector machine (SVM) classifier to establish a disease prediction model for NTD diagnosis. We identified 113 differentially expressed proteins; of these, 23 were either up‐ or downregulated 1.5‐fold or more, including five complement proteins (C1QA, C1S, C1R, C9, and C3); C3 and C9 were downregulated significantly in NTD groups. The accuracy rate of the SVM model of the complement factors (including C1QA, C1S, and C3) was 62.5%, with 60% sensitivity and 67% specificity, while the accuracy rate of the SVM model of alpha‐fetoprotein (AFP, an established biomarker for NTDs) was 62.5%, with 75% sensitivity and 50% specificity. Combination of the complement factor and AFP data resulted in the SVM model accuracy of 75%, and receiver operating characteristic curve analysis showed 75% sensitivity and 75% specificity. These data suggest that a disease prediction model based on combined complement factor and AFP data could serve as a more accurate method of noninvasive prenatal NTD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蚂蚁完成签到,获得积分20
刚刚
avalanche应助答辩科学家采纳,获得30
1秒前
CodeCraft应助跳跃的冰淇淋采纳,获得10
2秒前
复杂曼梅发布了新的文献求助10
2秒前
Y橙子完成签到,获得积分10
3秒前
zyq发布了新的文献求助10
3秒前
隐形曼青应助郑zhenglanyou采纳,获得10
3秒前
4秒前
漂亮夏兰发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
Ava应助没有你沉采纳,获得10
4秒前
4秒前
5秒前
寻道图强应助General采纳,获得30
5秒前
6秒前
17发布了新的文献求助30
7秒前
善学以致用应助王世俊采纳,获得10
7秒前
小v的格洛米完成签到,获得积分10
7秒前
等待冰之完成签到 ,获得积分10
7秒前
上彐下火发布了新的文献求助10
8秒前
Catalina_S应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
icey发布了新的文献求助10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
HeAuBook应助科研通管家采纳,获得20
9秒前
风趣手链发布了新的文献求助10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337