Complement factors and alpha‐fetoprotein as biomarkers for noninvasive prenatal diagnosis of neural tube defects

接收机工作特性 医学 生物标志物 神经管 支持向量机 补语(音乐) 假阳性率 病理 生物信息学 内科学 生物 人工智能 计算机科学 遗传学 基因 表型 互补 胚胎
作者
Naixuan Dong,Hui Gu,Dan Liu,Xiaowei Wei,Wei Ma,Ling Ma,Yusi Liu,Yanfu Wang,Shanshan Jia,Jieting Huang,Chenfei Wang,Xuan He,Tianchu Huang,Yiwen He,Qiang Zhang,Dong An,Yuzuo Bai,Zhengwei Yuan
出处
期刊:Annals of the New York Academy of Sciences [Wiley]
卷期号:1478 (1): 75-91 被引量:17
标识
DOI:10.1111/nyas.14443
摘要

Abstract Neural tube defects (NTDs) are serious congenital malformations. In this study, we aimed to identify more specific and sensitive maternal serum biomarkers for noninvasive NTD screenings. We collected serum from 37 pregnant women carrying fetuses with NTDs and 38 pregnant women carrying normal fetuses. Isobaric tags for relative and absolute quantitation were conducted for differential proteomic analysis, and an enzyme‐linked immunosorbent assay was used to validate the results. We then used a support vector machine (SVM) classifier to establish a disease prediction model for NTD diagnosis. We identified 113 differentially expressed proteins; of these, 23 were either up‐ or downregulated 1.5‐fold or more, including five complement proteins (C1QA, C1S, C1R, C9, and C3); C3 and C9 were downregulated significantly in NTD groups. The accuracy rate of the SVM model of the complement factors (including C1QA, C1S, and C3) was 62.5%, with 60% sensitivity and 67% specificity, while the accuracy rate of the SVM model of alpha‐fetoprotein (AFP, an established biomarker for NTDs) was 62.5%, with 75% sensitivity and 50% specificity. Combination of the complement factor and AFP data resulted in the SVM model accuracy of 75%, and receiver operating characteristic curve analysis showed 75% sensitivity and 75% specificity. These data suggest that a disease prediction model based on combined complement factor and AFP data could serve as a more accurate method of noninvasive prenatal NTD diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
善学以致用应助oue采纳,获得10
2秒前
2秒前
2秒前
HCT完成签到,获得积分10
3秒前
3秒前
3秒前
limerence发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助玥越采纳,获得10
4秒前
1chen完成签到 ,获得积分10
4秒前
5秒前
刘霆勋发布了新的文献求助10
5秒前
哪位完成签到,获得积分10
5秒前
风吹麦田应助fish采纳,获得100
6秒前
fnuew发布了新的文献求助10
6秒前
JIANGSHUI发布了新的文献求助10
7秒前
林深完成签到,获得积分10
7秒前
风清扬发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
山雷发布了新的文献求助10
7秒前
Sylvia完成签到,获得积分10
8秒前
struggle完成签到,获得积分20
8秒前
科研小尹发布了新的文献求助10
8秒前
齐天大圣完成签到,获得积分10
9秒前
禹宛白发布了新的文献求助10
9秒前
jhonnyhuang发布了新的文献求助10
10秒前
10秒前
JIANGSHUI完成签到,获得积分10
11秒前
万金油完成签到 ,获得积分10
11秒前
老王爱学习完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
Kia发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802