State-of-Health Estimation and Remaining-Useful-Life Prediction for Lithium-Ion Battery Using a Hybrid Data-Driven Method

停工期 健康状况 电池(电) 可靠性工程 健康管理体系 预言 瓶颈 数据挖掘 计算机科学 工程类 功率(物理) 嵌入式系统 替代医学 病理 物理 医学 量子力学
作者
Bin Gou,Yan Xu,Feng Xue
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 10854-10867 被引量:227
标识
DOI:10.1109/tvt.2020.3014932
摘要

Lithium-ion (Li-ion) batteries have been widely applied in industrial applications. It is desired to predict the health state of batteries to achieve optimal operation and health management. However, accuracy is the biggest bottleneck for battery health prediction. In this paper, a new hybrid ensemble data-driven method is proposed to accurately predict the state-of-health (SOH) and remaining-useful-life (RUL) of Li-ion batteries. A health indicator is selected as feature inputs to predict the degradation trend of battery, after the Pearson correlation analysis. Two random learning algorithms are integrated to extract the inherent relationship between the extracted health indicator and practical SOH due to their good learning performance. Based on the estimated SOH, the nonlinear autoregressive (NAR) structure is designed to reduce the RUL prediction error of each learning model since the NAR structure makes good use of historical and current information. Finally, in order to quantitatively evaluate the prediction interval of the RUL, a Bootstrap-based uncertainty management method is designed. Test results on two publicly available datasets show that the proposed hybrid data-driven method can accurately predict the SOH and RUL of batteries. The proposed method does not require any other additional hardware or system downtime, which makes it suitable for online practical applications, such as energy storage systems and electric vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助章鱼小肉丸1024采纳,获得10
1秒前
小马甲应助可可杨采纳,获得10
1秒前
1秒前
立刻睡大觉完成签到,获得积分10
2秒前
tayslay发布了新的文献求助10
2秒前
一一应助jtG采纳,获得10
2秒前
Akim应助jevon采纳,获得10
2秒前
WQW发布了新的文献求助10
3秒前
张朝程完成签到,获得积分10
4秒前
专注凌文发布了新的文献求助10
5秒前
跳跃的香岚完成签到,获得积分10
5秒前
FreedomThh完成签到,获得积分10
6秒前
MathFun完成签到 ,获得积分10
6秒前
罗杰发布了新的文献求助10
6秒前
shutup完成签到,获得积分10
6秒前
周六完成签到,获得积分10
6秒前
7秒前
Jessie发布了新的文献求助10
7秒前
8秒前
tayslay完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
Lily发布了新的文献求助10
11秒前
小米发布了新的文献求助10
12秒前
小马甲应助排骨粉蒸肉采纳,获得10
12秒前
13秒前
Jasper应助WQW采纳,获得10
13秒前
可可杨发布了新的文献求助10
14秒前
夏生发布了新的文献求助10
15秒前
善学以致用应助愫问采纳,获得50
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
HCLonely应助科研通管家采纳,获得10
15秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221620
求助须知:如何正确求助?哪些是违规求助? 2870333
关于积分的说明 8170293
捐赠科研通 2537291
什么是DOI,文献DOI怎么找? 1369377
科研通“疑难数据库(出版商)”最低求助积分说明 645466
邀请新用户注册赠送积分活动 619147