State-of-Health Estimation and Remaining-Useful-Life Prediction for Lithium-Ion Battery Using a Hybrid Data-Driven Method

停工期 健康状况 电池(电) 可靠性工程 健康管理体系 预言 瓶颈 数据挖掘 计算机科学 工程类 功率(物理) 嵌入式系统 替代医学 病理 物理 医学 量子力学
作者
Bin Gou,Yan Xu,Feng Xue
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 10854-10867 被引量:258
标识
DOI:10.1109/tvt.2020.3014932
摘要

Lithium-ion (Li-ion) batteries have been widely applied in industrial applications. It is desired to predict the health state of batteries to achieve optimal operation and health management. However, accuracy is the biggest bottleneck for battery health prediction. In this paper, a new hybrid ensemble data-driven method is proposed to accurately predict the state-of-health (SOH) and remaining-useful-life (RUL) of Li-ion batteries. A health indicator is selected as feature inputs to predict the degradation trend of battery, after the Pearson correlation analysis. Two random learning algorithms are integrated to extract the inherent relationship between the extracted health indicator and practical SOH due to their good learning performance. Based on the estimated SOH, the nonlinear autoregressive (NAR) structure is designed to reduce the RUL prediction error of each learning model since the NAR structure makes good use of historical and current information. Finally, in order to quantitatively evaluate the prediction interval of the RUL, a Bootstrap-based uncertainty management method is designed. Test results on two publicly available datasets show that the proposed hybrid data-driven method can accurately predict the SOH and RUL of batteries. The proposed method does not require any other additional hardware or system downtime, which makes it suitable for online practical applications, such as energy storage systems and electric vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只凡凡发布了新的文献求助10
刚刚
syl完成签到,获得积分10
刚刚
情怀应助青塘龙仔采纳,获得10
刚刚
脑洞疼应助青塘龙仔采纳,获得10
刚刚
CodeCraft应助青塘龙仔采纳,获得10
刚刚
科研通AI6应助张永明采纳,获得10
2秒前
堀江真夏发布了新的文献求助10
2秒前
有趣的桃完成签到,获得积分10
3秒前
Kototo发布了新的文献求助10
3秒前
3秒前
李健的小迷弟应助jm采纳,获得10
3秒前
3秒前
天天快乐应助窦窦窦窦窦采纳,获得100
3秒前
5秒前
6秒前
桃子完成签到,获得积分10
6秒前
7秒前
7秒前
WangXiaoze发布了新的文献求助10
7秒前
8秒前
薰衣草发布了新的文献求助10
8秒前
8秒前
好叔叔发布了新的文献求助10
9秒前
9秒前
dnchenchen完成签到,获得积分10
9秒前
JamesPei应助hyeah采纳,获得10
9秒前
9秒前
王科婷发布了新的文献求助10
10秒前
小二郎应助suda采纳,获得10
10秒前
10秒前
自由颖发布了新的文献求助20
12秒前
han发布了新的文献求助10
12秒前
赘婿应助甘草不甜采纳,获得10
12秒前
小蘑菇应助巴卡玛卡采纳,获得10
12秒前
13秒前
iuo完成签到,获得积分10
13秒前
13秒前
今后应助小y同学采纳,获得10
13秒前
巫雍发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251905
求助须知:如何正确求助?哪些是违规求助? 4415834
关于积分的说明 13747630
捐赠科研通 4287647
什么是DOI,文献DOI怎么找? 2352548
邀请新用户注册赠送积分活动 1349348
关于科研通互助平台的介绍 1308876