Study on terahertz spectrum analysis and recognition modeling of common agricultural diseases

太赫兹辐射 白粉病 支持向量机 人工智能 太赫兹时域光谱学 模式识别(心理学) 计算机科学 太赫兹光谱与技术 生物 光学 园艺 物理
作者
Bin Li,Dianpeng Zhang,Yin Shen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:243: 118820-118820 被引量:16
标识
DOI:10.1016/j.saa.2020.118820
摘要

Diseases are critical factors that affect the yield and quality of crops. Therefore, it is of great research value to develop rapid and quantitative methods for identification of common agricultural diseases. This exploratory study involved data analysis of common fungal pathogens using identification modeling based on terahertz spectrum technology. The selected pathogens were Physalospora piricola, Erysiphe cichoracearum, and Botrytis cinerea, which are common fungal pathogens that cause apple ring rot, cucumber powdery mildew, and grape gray mold blight, respectively. Taking polyethylene as the control, the terahertz time-domain spectra, and frequency-domain spectra of samples of the three pathogens were both measured. The absorption and refraction characteristics of these samples in the range of 0.1–2.0 THz were calculated and analyzed, and samples were then divided using the KS algorithm. Terahertz spectrum-image data blocks of the pathogen samples were preprocessed, and the dimensions of data were reduced using non-local mean filtering and the SPA algorithm, respectively. K-nearest neighbors (KNN), support vector machine (SVM), and BP neural network (BPNN), and other algorithms were used for analysis of terahertz images at characteristic frequencies, and for investigating the identification model. The model was quantitatively evaluated, and its imaging visualization was studied. The results suggest that there are significant differences among P. piricola, E. cichoracearum, and B. cinerea in absorption and refraction in the terahertz band. SVM modeling identification results of the three pathogens at the frequency of 1.376 THz were satisfactory, with an Rp of 0.9649, RMSEP of 0.0273, and a high (93.8212%) comprehensive evaluation index F1-score, and a clearly identifiable visualization effect. This study demonstrated the potential of terahertz spectroscopy to be used for identification of common crop pathogens and has provided technical references for the rapid diagnosis and early warning of agricultural diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
zhaomr完成签到,获得积分10
1秒前
1秒前
watercolding发布了新的文献求助10
1秒前
zsp发布了新的文献求助10
2秒前
金志铭驳回了852应助
2秒前
不倦应助xuanwu采纳,获得10
4秒前
无花果应助xjl采纳,获得10
5秒前
orchid发布了新的文献求助10
5秒前
孝顺的白薇完成签到,获得积分20
5秒前
lily完成签到,获得积分20
6秒前
蓝溺应助ltxinanjiao采纳,获得30
7秒前
大模型应助watercolding采纳,获得10
7秒前
溏心蛋完成签到,获得积分10
7秒前
8秒前
开心的火龙果完成签到,获得积分10
9秒前
9秒前
Sandy完成签到 ,获得积分10
10秒前
彭于晏应助肖遥采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
Ww应助科研通管家采纳,获得10
11秒前
风吹麦田应助科研通管家采纳,获得30
11秒前
无花果应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
香蕉觅云应助孝顺的白薇采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得80
11秒前
Jeff_Lin应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
彭于晏应助丁慧采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544