背景(考古学)
计算机科学
工作(物理)
控制(管理)
系统工程
工程类
人工智能
机械工程
生物
古生物学
作者
Aaron D. Ames,Samuel Coogan,Magnus Egerstedt,Gennaro Notomista,Koushil Sreenath,Paulo Tabuada
出处
期刊:European Control Conference
日期:2019-06-01
被引量:724
标识
DOI:10.23919/ecc.2019.8796030
摘要
This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI