Hardware Acceleration of Sparse and Irregular Tensor Computations of ML Models: A Survey and Insights

计算机科学 硬件加速 计算 杠杆(统计) 软件 加速度 计算机工程 计算科学 并行计算 张量(固有定义) 钥匙(锁) 计算机体系结构 人工智能 算法 程序设计语言 计算机安全 数学 经典力学 物理 纯数学
作者
Shail Dave,Riyadh Baghdadi,Tony Nowatzki,Sasikanth Avancha,Aviral Shrivastava,Baoxin Li
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:109 (10): 1706-1752 被引量:54
标识
DOI:10.1109/jproc.2021.3098483
摘要

Machine learning (ML) models are widely used in many important domains. For efficiently processing these computational- and memory-intensive applications, tensors of these overparameterized models are compressed by leveraging sparsity, size reduction, and quantization of tensors. Unstructured sparsity and tensors with varying dimensions yield irregular computation, communication, and memory access patterns; processing them on hardware accelerators in a conventional manner does not inherently leverage acceleration opportunities. This article provides a comprehensive survey on the efficient execution of sparse and irregular tensor computations of ML models on hardware accelerators. In particular, it discusses enhancement modules in the architecture design and the software support, categorizes different hardware designs and acceleration techniques, analyzes them in terms of hardware and execution costs, analyzes achievable accelerations for recent DNNs, and highlights further opportunities in terms of hardware/software/model codesign optimizations (inter/intramodule). The takeaways from this article include the following: understanding the key challenges in accelerating sparse, irregular shaped, and quantized tensors; understanding enhancements in accelerator systems for supporting their efficient computations; analyzing tradeoffs in opting for a specific design choice for encoding, storing, extracting, communicating, computing, and load-balancing the nonzeros; understanding how structured sparsity can improve storage efficiency and balance computations; understanding how to compile and map models with sparse tensors on the accelerators; and understanding recent design trends for efficient accelerations and further opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hao完成签到,获得积分10
2秒前
Stalin完成签到,获得积分10
2秒前
2秒前
一三发布了新的文献求助10
3秒前
番茄瘦肉粥完成签到,获得积分10
4秒前
5秒前
可爱的函函应助calmxp采纳,获得10
6秒前
Rui完成签到,获得积分10
6秒前
薄荷糖完成签到,获得积分10
6秒前
11秒前
12秒前
12秒前
xuxu完成签到,获得积分10
14秒前
AAAA发布了新的文献求助10
14秒前
西西完成签到 ,获得积分10
14秒前
baijiayi应助paleo-地质采纳,获得40
14秒前
长安发布了新的文献求助30
16秒前
18秒前
NexusExplorer应助陈陈采纳,获得10
18秒前
深情的鞯完成签到,获得积分10
18秒前
faye发布了新的文献求助10
19秒前
20秒前
Owen应助小天采纳,获得10
20秒前
23秒前
不配.应助dawnusk采纳,获得10
24秒前
充电宝应助faye采纳,获得10
24秒前
25秒前
朴实如冰发布了新的文献求助10
25秒前
科目三应助小乔采纳,获得10
28秒前
29秒前
29秒前
32秒前
CodeCraft应助小天采纳,获得10
32秒前
今天也要好好学习完成签到,获得积分10
33秒前
33秒前
sqw完成签到,获得积分10
34秒前
斯文败类应助任乘风采纳,获得10
34秒前
二小发布了新的文献求助10
35秒前
35秒前
zhangyu发布了新的文献求助10
36秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222532
求助须知:如何正确求助?哪些是违规求助? 2871168
关于积分的说明 8174227
捐赠科研通 2538149
什么是DOI,文献DOI怎么找? 1370339
科研通“疑难数据库(出版商)”最低求助积分说明 645783
邀请新用户注册赠送积分活动 619564