数学
丢番图方程
猜想
椭圆曲线
性格(数学)
复数乘法
整数(计算机科学)
数论
超奇异椭圆曲线
组合数学
离散数学
纯数学
几何学
计算机科学
程序设计语言
作者
Michael A. Bennett,Samir Siksek
标识
DOI:10.4007/annals.2020.191.2.2
摘要
If $k$ is a sufficiently large positive integer, we show that the Diophantine equation \[ n(n+d)\cdots(n+(k-1)d) = y^\ell \] has at most finitely many solutions in positive integers $n$, $d$, $y$ and $\ell$, with $\mathrm{gcd}(n,d)=1$ and $\ell \ge 2$. Our proof relies upon Frey-Hellegouarch curves and results on supersingular primes for elliptic curves without complex multiplication, derived from upper bounds for short character sums and sieves, analytic and combinatorial.
科研通智能强力驱动
Strongly Powered by AbleSci AI