已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Selection of training samples for updating conventional soil map based on spatial neighborhood analysis of environmental covariates

地形湿度指数 协变量 随机森林 分水岭 选择(遗传算法) 统计 样品(材料) 土工试验 环境科学 空间分析 土壤科学 数字土壤制图 数学 土壤图 计算机科学 土壤水分 遥感 地理 人工智能 机器学习 数字高程模型 色谱法 化学
作者
Hong Gao,Xinyue Zhang,Liangjie Wang,Xiaohua He,Feixue Shen,Lin Yang
出处
期刊:Geoderma [Elsevier]
卷期号:366: 114244-114244 被引量:2
标识
DOI:10.1016/j.geoderma.2020.114244
摘要

Abstract Selection of training samples plays an important role in updating conventional soil maps with data mining models. In this paper, we developed a method to determine spatial locations of training samples based on spatial neighborhood analysis of environmental covariates for each soil polygon. Training samples were selected based on a single environmental variable or integrated variables generated using multiple variables. Sensitivity analysis was also conducted to test the effect of different spatial neighborhood sizes and selected sample numbers on soil mapping accuracy. Random selection of training samples from soil polygons and soil types respectively were applied to compare with the proposed method in a study area in Raffelson watershed in La Crosse, Wisconsin of USA. Random forest was adopted as the soil prediction model. Results showed that training samples selected using single variables such as Topographic Wetness Index (TWI), slope, plan curvature, profile curvature or slope length factor with the proposed method improved the overall mapping accuracies compared with the conventional soil map, of which using TWI achieved the highest improvement of 27%. The proposed method using TWI, slope or slope length factor performed better than random selection strategies. Random selection from soil polygons generated higher overall mapping accuracies than from soil types. It was concluded that using composite environmental variables which could represent the soil forming environment of a study area well is recommended when applying the proposed method. The proposed method is not sensitive to the selected sample number, but an appropriate neighborhood size is needed for using the proposed method. In our study area with small spatial coverage, neighborhood size 5 × 5 or 3 × 3 is recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
头号玩家完成签到,获得积分10
3秒前
SAIL发布了新的文献求助10
6秒前
7秒前
9秒前
tursun应助isonomia采纳,获得200
11秒前
何况我是单身狗完成签到,获得积分10
12秒前
pigzhu发布了新的文献求助10
12秒前
13秒前
下午好完成签到 ,获得积分10
14秒前
白小黑发布了新的文献求助30
15秒前
vica发布了新的文献求助10
15秒前
研友_8op0RL完成签到 ,获得积分10
16秒前
鱼儿游完成签到 ,获得积分10
17秒前
艺玲发布了新的文献求助10
17秒前
toto完成签到 ,获得积分10
19秒前
Mito2009完成签到,获得积分10
20秒前
赘婿应助张文静采纳,获得10
22秒前
Hello应助忧虑的羊采纳,获得10
22秒前
Li完成签到 ,获得积分10
23秒前
瘦瘦可冥发布了新的文献求助20
25秒前
29秒前
qi完成签到 ,获得积分10
29秒前
Paddi发布了新的文献求助10
29秒前
31秒前
忧虑的羊发布了新的文献求助10
33秒前
ly发布了新的文献求助30
36秒前
38秒前
yyq应助忧虑的羊采纳,获得10
41秒前
划水发布了新的文献求助10
42秒前
42秒前
张文静发布了新的文献求助10
45秒前
48秒前
yanhan2009完成签到 ,获得积分10
50秒前
嘟嘟嘟完成签到 ,获得积分10
50秒前
划水完成签到,获得积分10
50秒前
51秒前
22222发布了新的文献求助10
52秒前
54秒前
56秒前
57秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353376
求助须知:如何正确求助?哪些是违规求助? 2978001
关于积分的说明 8683184
捐赠科研通 2659256
什么是DOI,文献DOI怎么找? 1456109
科研通“疑难数据库(出版商)”最低求助积分说明 674278
邀请新用户注册赠送积分活动 664978