Selection of training samples for updating conventional soil map based on spatial neighborhood analysis of environmental covariates

地形湿度指数 协变量 随机森林 分水岭 选择(遗传算法) 统计 样品(材料) 土工试验 环境科学 空间分析 土壤科学 数字土壤制图 数学 土壤图 计算机科学 土壤水分 遥感 地理 人工智能 机器学习 数字高程模型 色谱法 化学
作者
Hong Gao,Xinyue Zhang,Liangjie Wang,Xiaohua He,Feixue Shen,Lin Yang
出处
期刊:Geoderma [Elsevier]
卷期号:366: 114244-114244 被引量:2
标识
DOI:10.1016/j.geoderma.2020.114244
摘要

Abstract Selection of training samples plays an important role in updating conventional soil maps with data mining models. In this paper, we developed a method to determine spatial locations of training samples based on spatial neighborhood analysis of environmental covariates for each soil polygon. Training samples were selected based on a single environmental variable or integrated variables generated using multiple variables. Sensitivity analysis was also conducted to test the effect of different spatial neighborhood sizes and selected sample numbers on soil mapping accuracy. Random selection of training samples from soil polygons and soil types respectively were applied to compare with the proposed method in a study area in Raffelson watershed in La Crosse, Wisconsin of USA. Random forest was adopted as the soil prediction model. Results showed that training samples selected using single variables such as Topographic Wetness Index (TWI), slope, plan curvature, profile curvature or slope length factor with the proposed method improved the overall mapping accuracies compared with the conventional soil map, of which using TWI achieved the highest improvement of 27%. The proposed method using TWI, slope or slope length factor performed better than random selection strategies. Random selection from soil polygons generated higher overall mapping accuracies than from soil types. It was concluded that using composite environmental variables which could represent the soil forming environment of a study area well is recommended when applying the proposed method. The proposed method is not sensitive to the selected sample number, but an appropriate neighborhood size is needed for using the proposed method. In our study area with small spatial coverage, neighborhood size 5 × 5 or 3 × 3 is recommended.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李爱国应助hui采纳,获得10
刚刚
changnan完成签到,获得积分20
2秒前
潇湘雪月完成签到,获得积分10
4秒前
深情安青应助琢钰采纳,获得10
4秒前
112发布了新的文献求助10
4秒前
5秒前
情怀应助Qssai采纳,获得10
7秒前
笑相完成签到,获得积分10
7秒前
changnan发布了新的文献求助10
7秒前
8秒前
Ni发布了新的文献求助10
9秒前
10秒前
10秒前
呼呼发布了新的文献求助10
11秒前
hulian发布了新的文献求助10
12秒前
零可林应助悬铃木采纳,获得10
12秒前
13秒前
13秒前
13秒前
临床菜鸟完成签到 ,获得积分10
13秒前
14秒前
长情萤完成签到,获得积分10
14秒前
琢钰发布了新的文献求助10
14秒前
飞虎发布了新的文献求助10
15秒前
歪比巴卜发布了新的文献求助10
15秒前
阿良发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
19秒前
19秒前
天真璎完成签到,获得积分10
19秒前
靖宇发布了新的文献求助10
19秒前
曦颜发布了新的文献求助20
20秒前
Y神完成签到 ,获得积分10
21秒前
呼呼完成签到,获得积分10
21秒前
城南花已开完成签到,获得积分10
21秒前
汉堡包应助歪比巴卜采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527