Selection of training samples for updating conventional soil map based on spatial neighborhood analysis of environmental covariates

地形湿度指数 协变量 随机森林 分水岭 选择(遗传算法) 统计 样品(材料) 土工试验 环境科学 空间分析 土壤科学 数字土壤制图 数学 土壤图 计算机科学 土壤水分 遥感 地理 人工智能 机器学习 数字高程模型 色谱法 化学
作者
Hong Gao,Xinyue Zhang,Liangjie Wang,Xiaohua He,Feixue Shen,Lin Yang
出处
期刊:Geoderma [Elsevier BV]
卷期号:366: 114244-114244 被引量:2
标识
DOI:10.1016/j.geoderma.2020.114244
摘要

Abstract Selection of training samples plays an important role in updating conventional soil maps with data mining models. In this paper, we developed a method to determine spatial locations of training samples based on spatial neighborhood analysis of environmental covariates for each soil polygon. Training samples were selected based on a single environmental variable or integrated variables generated using multiple variables. Sensitivity analysis was also conducted to test the effect of different spatial neighborhood sizes and selected sample numbers on soil mapping accuracy. Random selection of training samples from soil polygons and soil types respectively were applied to compare with the proposed method in a study area in Raffelson watershed in La Crosse, Wisconsin of USA. Random forest was adopted as the soil prediction model. Results showed that training samples selected using single variables such as Topographic Wetness Index (TWI), slope, plan curvature, profile curvature or slope length factor with the proposed method improved the overall mapping accuracies compared with the conventional soil map, of which using TWI achieved the highest improvement of 27%. The proposed method using TWI, slope or slope length factor performed better than random selection strategies. Random selection from soil polygons generated higher overall mapping accuracies than from soil types. It was concluded that using composite environmental variables which could represent the soil forming environment of a study area well is recommended when applying the proposed method. The proposed method is not sensitive to the selected sample number, but an appropriate neighborhood size is needed for using the proposed method. In our study area with small spatial coverage, neighborhood size 5 × 5 or 3 × 3 is recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
1秒前
1秒前
利利应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
乐观小之应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
1秒前
whatever应助科研通管家采纳,获得10
1秒前
herococa应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
纪梵希发布了新的文献求助10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
www应助科研通管家采纳,获得10
2秒前
乐观小之应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
852应助落寞凌波采纳,获得10
2秒前
利利应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Yue完成签到 ,获得积分10
3秒前
3秒前
研友_LN7x6n发布了新的文献求助20
3秒前
AUGKING27发布了新的文献求助10
4秒前
4秒前
6秒前
会撒娇的金鑫完成签到,获得积分20
6秒前
6秒前
天选发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
SciGPT应助云舒采纳,获得10
9秒前
mkl完成签到,获得积分10
10秒前
搞怪莫茗发布了新的文献求助10
11秒前
11秒前
大个应助winwin采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954534
求助须知:如何正确求助?哪些是违规求助? 3500649
关于积分的说明 11100400
捐赠科研通 3231158
什么是DOI,文献DOI怎么找? 1786297
邀请新用户注册赠送积分活动 869936
科研通“疑难数据库(出版商)”最低求助积分说明 801719