已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

计算机科学 深度学习 人工智能 能量(信号处理) 物理 量子力学
作者
Yuzhi Zhang,Haidi Wang,Weijie Chen,Jinzhe Zeng,Linfeng Zhang,Han Wang,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:253: 107206-107206 被引量:722
标识
DOI:10.1016/j.cpc.2020.107206
摘要

In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically useful is still a very non-trivial task. A key component in this task is the generation of datasets used in model training. In this paper, we introduce the Deep Potential GENerator (DP-GEN), an open-source software platform that implements the recently proposed ”on-the-fly” learning procedure (Zhang et al. 2019) and is capable of generating uniformly accurate deep learning based PES models in a way that minimizes human intervention and the computational cost for data generation and model training. DP-GEN automatically and iteratively performs three steps: exploration, labeling, and training. It supports various popular packages for these three steps: LAMMPS for exploration, Quantum Espresso, VASP, CP2K, etc. for labeling, and DeePMD-kit for training. It also allows automatic job submission and result collection on different types of machines, such as high performance clusters and cloud machines, and is adaptive to different job management tools, including Slurm, PBS, and LSF. As a concrete example, we illustrate the details of the process for generating a general-purpose PES model for Cu using DP-GEN. Program Title: DP-GEN Program Files doi: http://dx.doi.org/10.17632/sxybkgc5xc.1 Licensing provisions: LGPL Programming language: Python Nature of problem: Generating reliable deep learning based potential energy models with minimal human intervention and computational cost. Solution method: The concurrent learning scheme is implemented. Supports for sampling configuration space with LAMMPS, generating ab initio data with Quantum Espresso, VASP, CP2K and training potential models with DeePMD-kit are provided. Supports for different machines including workstations, high performance clusters and cloud machines are provided. Supports for job management tools including Slurm, PBS, LSF are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逍遥完成签到,获得积分10
1秒前
临子完成签到,获得积分10
1秒前
Kunning完成签到 ,获得积分10
1秒前
峰妹完成签到 ,获得积分10
2秒前
hhhhh完成签到 ,获得积分0
3秒前
高天雨完成签到 ,获得积分10
3秒前
无言完成签到 ,获得积分10
3秒前
神仙渔完成签到,获得积分0
3秒前
zhuo完成签到,获得积分10
3秒前
一剑温柔完成签到 ,获得积分10
4秒前
小李完成签到 ,获得积分10
4秒前
缥缈雯完成签到,获得积分20
4秒前
自信书文完成签到 ,获得积分10
5秒前
小阳阳5010完成签到 ,获得积分10
5秒前
miao完成签到 ,获得积分10
5秒前
Pikno123应助ikea1984采纳,获得10
6秒前
SciGPT应助小白采纳,获得10
6秒前
7秒前
Lexcellent完成签到 ,获得积分10
7秒前
plant完成签到 ,获得积分10
7秒前
villanelle0308完成签到,获得积分10
7秒前
静水流深完成签到,获得积分10
7秒前
Ykaor完成签到 ,获得积分10
7秒前
小二郎应助东坡采纳,获得10
7秒前
奋斗的小笼包完成签到 ,获得积分10
8秒前
大方荷花完成签到 ,获得积分10
8秒前
8秒前
hy完成签到 ,获得积分10
9秒前
李程阳完成签到 ,获得积分10
10秒前
Jasper应助尚尚采纳,获得10
10秒前
无际的星空下完成签到,获得积分10
10秒前
凶狠的映易完成签到 ,获得积分10
10秒前
mmyhn完成签到,获得积分10
11秒前
青己完成签到 ,获得积分10
11秒前
朴素蓝完成签到 ,获得积分10
11秒前
hx完成签到 ,获得积分10
11秒前
无言关注了科研通微信公众号
11秒前
小李完成签到 ,获得积分10
12秒前
栖枝完成签到 ,获得积分10
12秒前
Lucas应助跳跃昊焱采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590141
求助须知:如何正确求助?哪些是违规求助? 4674591
关于积分的说明 14794672
捐赠科研通 4630392
什么是DOI,文献DOI怎么找? 2532610
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10