DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

计算机科学 深度学习 人工智能 能量(信号处理) 物理 量子力学
作者
Yuzhi Zhang,Haidi Wang,Weijie Chen,Jinzhe Zeng,Linfeng Zhang,Han Wang,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:253: 107206-107206 被引量:722
标识
DOI:10.1016/j.cpc.2020.107206
摘要

In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically useful is still a very non-trivial task. A key component in this task is the generation of datasets used in model training. In this paper, we introduce the Deep Potential GENerator (DP-GEN), an open-source software platform that implements the recently proposed ”on-the-fly” learning procedure (Zhang et al. 2019) and is capable of generating uniformly accurate deep learning based PES models in a way that minimizes human intervention and the computational cost for data generation and model training. DP-GEN automatically and iteratively performs three steps: exploration, labeling, and training. It supports various popular packages for these three steps: LAMMPS for exploration, Quantum Espresso, VASP, CP2K, etc. for labeling, and DeePMD-kit for training. It also allows automatic job submission and result collection on different types of machines, such as high performance clusters and cloud machines, and is adaptive to different job management tools, including Slurm, PBS, and LSF. As a concrete example, we illustrate the details of the process for generating a general-purpose PES model for Cu using DP-GEN. Program Title: DP-GEN Program Files doi: http://dx.doi.org/10.17632/sxybkgc5xc.1 Licensing provisions: LGPL Programming language: Python Nature of problem: Generating reliable deep learning based potential energy models with minimal human intervention and computational cost. Solution method: The concurrent learning scheme is implemented. Supports for sampling configuration space with LAMMPS, generating ab initio data with Quantum Espresso, VASP, CP2K and training potential models with DeePMD-kit are provided. Supports for different machines including workstations, high performance clusters and cloud machines are provided. Supports for job management tools including Slurm, PBS, LSF are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
你嵙这个期刊没买应助Gin采纳,获得10
刚刚
大模型应助pzh采纳,获得10
1秒前
彭于晏应助复杂的画板采纳,获得30
1秒前
郑智You完成签到 ,获得积分20
3秒前
Dante完成签到,获得积分10
3秒前
111发布了新的文献求助10
3秒前
4秒前
懒羊羊发布了新的文献求助10
4秒前
4秒前
XuChen发布了新的文献求助10
4秒前
5秒前
5秒前
又绿应助rslysywd采纳,获得10
6秒前
朱诗佳完成签到,获得积分10
6秒前
亮亮完成签到 ,获得积分10
7秒前
Dante发布了新的文献求助10
7秒前
liao应助XuChen采纳,获得10
8秒前
快乐鞋子发布了新的文献求助10
9秒前
Orange应助迅速的宛海采纳,获得10
9秒前
9秒前
9秒前
朱诗佳发布了新的文献求助10
9秒前
斯文败类应助愉悦采纳,获得10
10秒前
11秒前
小二郎应助111采纳,获得10
11秒前
12秒前
聚对苯二甲酸木糖醇酯完成签到,获得积分10
12秒前
yffffff发布了新的文献求助10
12秒前
pzh发布了新的文献求助10
12秒前
haha关注了科研通微信公众号
12秒前
cutterlet完成签到,获得积分10
13秒前
香蕉觅云应助张彤彤采纳,获得10
14秒前
15秒前
15秒前
可爱的函函应助ZXDDDD采纳,获得10
15秒前
肉丸子发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501625
求助须知:如何正确求助?哪些是违规求助? 4597828
关于积分的说明 14461144
捐赠科研通 4531374
什么是DOI,文献DOI怎么找? 2483318
邀请新用户注册赠送积分活动 1466799
关于科研通互助平台的介绍 1439461