DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

Python(编程语言) 计算机科学 深度学习 人工智能 机器学习 计算科学 程序设计语言
作者
Yuzhi Zhang,Haidi Wang,Weijie Chen,Jinzhe Zeng,Linfeng Zhang,Han Wang,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:253: 107206-107206 被引量:440
标识
DOI:10.1016/j.cpc.2020.107206
摘要

In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically useful is still a very non-trivial task. A key component in this task is the generation of datasets used in model training. In this paper, we introduce the Deep Potential GENerator (DP-GEN), an open-source software platform that implements the recently proposed ”on-the-fly” learning procedure (Zhang et al. 2019) and is capable of generating uniformly accurate deep learning based PES models in a way that minimizes human intervention and the computational cost for data generation and model training. DP-GEN automatically and iteratively performs three steps: exploration, labeling, and training. It supports various popular packages for these three steps: LAMMPS for exploration, Quantum Espresso, VASP, CP2K, etc. for labeling, and DeePMD-kit for training. It also allows automatic job submission and result collection on different types of machines, such as high performance clusters and cloud machines, and is adaptive to different job management tools, including Slurm, PBS, and LSF. As a concrete example, we illustrate the details of the process for generating a general-purpose PES model for Cu using DP-GEN. Program Title: DP-GEN Program Files doi: http://dx.doi.org/10.17632/sxybkgc5xc.1 Licensing provisions: LGPL Programming language: Python Nature of problem: Generating reliable deep learning based potential energy models with minimal human intervention and computational cost. Solution method: The concurrent learning scheme is implemented. Supports for sampling configuration space with LAMMPS, generating ab initio data with Quantum Espresso, VASP, CP2K and training potential models with DeePMD-kit are provided. Supports for different machines including workstations, high performance clusters and cloud machines are provided. Supports for job management tools including Slurm, PBS, LSF are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Orange应助123采纳,获得10
2秒前
4秒前
仄言完成签到,获得积分10
4秒前
5秒前
儒雅的斑马完成签到,获得积分10
5秒前
汉堡包应助咕噜仔采纳,获得10
5秒前
FashionBoy应助momo采纳,获得10
5秒前
6秒前
6秒前
7秒前
第七兵团司令完成签到,获得积分10
8秒前
8秒前
qwq应助追梦采纳,获得10
8秒前
8秒前
9秒前
我爱Chem完成签到 ,获得积分10
9秒前
半生发布了新的文献求助30
10秒前
10秒前
成就梦松完成签到,获得积分10
10秒前
byyyy完成签到,获得积分10
10秒前
温暖的俊驰完成签到,获得积分10
11秒前
Isabel完成签到,获得积分10
11秒前
yx应助陈强采纳,获得30
12秒前
sokach发布了新的文献求助10
14秒前
缓慢荔枝发布了新的文献求助10
14秒前
123发布了新的文献求助10
15秒前
天御雪完成签到,获得积分10
15秒前
gen关闭了gen文献求助
15秒前
15秒前
科研通AI5应助oldlee采纳,获得10
16秒前
16秒前
MADKAI发布了新的文献求助10
16秒前
哈哈悦完成签到,获得积分10
16秒前
赘婿应助duoduozs采纳,获得10
16秒前
kai完成签到,获得积分10
17秒前
17秒前
情怀应助xhy采纳,获得10
17秒前
整齐的灭绝完成签到 ,获得积分10
18秒前
充电宝应助船舵采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672