DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

计算机科学 深度学习 人工智能 能量(信号处理) 物理 量子力学
作者
Yuzhi Zhang,Haidi Wang,Weijie Chen,Jinzhe Zeng,Linfeng Zhang,Han Wang,E Weinan
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:253: 107206-107206 被引量:609
标识
DOI:10.1016/j.cpc.2020.107206
摘要

In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically useful is still a very non-trivial task. A key component in this task is the generation of datasets used in model training. In this paper, we introduce the Deep Potential GENerator (DP-GEN), an open-source software platform that implements the recently proposed ”on-the-fly” learning procedure (Zhang et al. 2019) and is capable of generating uniformly accurate deep learning based PES models in a way that minimizes human intervention and the computational cost for data generation and model training. DP-GEN automatically and iteratively performs three steps: exploration, labeling, and training. It supports various popular packages for these three steps: LAMMPS for exploration, Quantum Espresso, VASP, CP2K, etc. for labeling, and DeePMD-kit for training. It also allows automatic job submission and result collection on different types of machines, such as high performance clusters and cloud machines, and is adaptive to different job management tools, including Slurm, PBS, and LSF. As a concrete example, we illustrate the details of the process for generating a general-purpose PES model for Cu using DP-GEN. Program Title: DP-GEN Program Files doi: http://dx.doi.org/10.17632/sxybkgc5xc.1 Licensing provisions: LGPL Programming language: Python Nature of problem: Generating reliable deep learning based potential energy models with minimal human intervention and computational cost. Solution method: The concurrent learning scheme is implemented. Supports for sampling configuration space with LAMMPS, generating ab initio data with Quantum Espresso, VASP, CP2K and training potential models with DeePMD-kit are provided. Supports for different machines including workstations, high performance clusters and cloud machines are provided. Supports for job management tools including Slurm, PBS, LSF are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嗝嗝发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
Canda完成签到 ,获得积分10
2秒前
筱筱完成签到 ,获得积分10
2秒前
111完成签到,获得积分20
2秒前
尘烟完成签到,获得积分10
4秒前
cc发布了新的文献求助10
4秒前
xuxu发布了新的文献求助30
4秒前
4秒前
昂不去发布了新的文献求助10
5秒前
可靠的毛衣完成签到 ,获得积分10
5秒前
111发布了新的文献求助10
5秒前
汤瀚文发布了新的文献求助10
6秒前
完美世界应助观鹤轩采纳,获得10
6秒前
zoiaii完成签到 ,获得积分10
7秒前
尘烟发布了新的文献求助10
7秒前
degg完成签到,获得积分10
7秒前
7秒前
HJJHJH发布了新的文献求助10
7秒前
8秒前
12秒前
zzy发布了新的文献求助20
13秒前
大模型应助Cris采纳,获得10
13秒前
SuHo发布了新的文献求助30
13秒前
月上云飞给月上云飞的求助进行了留言
15秒前
16秒前
梦梦婕发布了新的文献求助10
16秒前
颖永爱完成签到,获得积分10
18秒前
ZhiningZ完成签到 ,获得积分10
18秒前
19秒前
科研通AI5应助HJJHJH采纳,获得10
20秒前
21秒前
豆豆完成签到 ,获得积分10
22秒前
23秒前
王险达完成签到,获得积分20
23秒前
LC完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005969
求助须知:如何正确求助?哪些是违规求助? 4249507
关于积分的说明 13241150
捐赠科研通 4049265
什么是DOI,文献DOI怎么找? 2215242
邀请新用户注册赠送积分活动 1225168
关于科研通互助平台的介绍 1145745