DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

计算机科学 深度学习 人工智能 能量(信号处理) 物理 量子力学
作者
Yuzhi Zhang,Haidi Wang,Weijie Chen,Jinzhe Zeng,Linfeng Zhang,Han Wang,E Weinan
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:253: 107206-107206 被引量:525
标识
DOI:10.1016/j.cpc.2020.107206
摘要

In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically useful is still a very non-trivial task. A key component in this task is the generation of datasets used in model training. In this paper, we introduce the Deep Potential GENerator (DP-GEN), an open-source software platform that implements the recently proposed ”on-the-fly” learning procedure (Zhang et al. 2019) and is capable of generating uniformly accurate deep learning based PES models in a way that minimizes human intervention and the computational cost for data generation and model training. DP-GEN automatically and iteratively performs three steps: exploration, labeling, and training. It supports various popular packages for these three steps: LAMMPS for exploration, Quantum Espresso, VASP, CP2K, etc. for labeling, and DeePMD-kit for training. It also allows automatic job submission and result collection on different types of machines, such as high performance clusters and cloud machines, and is adaptive to different job management tools, including Slurm, PBS, and LSF. As a concrete example, we illustrate the details of the process for generating a general-purpose PES model for Cu using DP-GEN. Program Title: DP-GEN Program Files doi: http://dx.doi.org/10.17632/sxybkgc5xc.1 Licensing provisions: LGPL Programming language: Python Nature of problem: Generating reliable deep learning based potential energy models with minimal human intervention and computational cost. Solution method: The concurrent learning scheme is implemented. Supports for sampling configuration space with LAMMPS, generating ab initio data with Quantum Espresso, VASP, CP2K and training potential models with DeePMD-kit are provided. Supports for different machines including workstations, high performance clusters and cloud machines are provided. Supports for job management tools including Slurm, PBS, LSF are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RONG完成签到,获得积分10
刚刚
fkdbdy发布了新的文献求助10
2秒前
光华完成签到,获得积分10
2秒前
shishikai发布了新的文献求助10
3秒前
天天快乐应助pp采纳,获得10
5秒前
pmk发布了新的文献求助10
5秒前
Either发布了新的文献求助10
5秒前
hanchangcun完成签到,获得积分10
6秒前
Hengjian_Pu完成签到,获得积分10
6秒前
7秒前
9秒前
10秒前
10秒前
CodeCraft应助shishikai采纳,获得10
14秒前
14秒前
14秒前
兜兜发布了新的文献求助10
15秒前
柯一一应助fkdbdy采纳,获得10
15秒前
楚天娇发布了新的文献求助10
16秒前
上官若男应助科研通管家采纳,获得10
17秒前
17秒前
传奇3应助科研通管家采纳,获得30
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
coolkid应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
17秒前
coolkid应助galaxy采纳,获得10
19秒前
上官若男应助huhuhuuh采纳,获得10
19秒前
Hanguo发布了新的文献求助10
19秒前
淡定井完成签到 ,获得积分10
20秒前
FashionBoy应助矮小的猕猴桃采纳,获得10
21秒前
今后应助兜兜采纳,获得10
22秒前
孤独念柏完成签到,获得积分10
22秒前
SYLH应助球球了采纳,获得10
26秒前
Wanderer完成签到 ,获得积分10
27秒前
27秒前
29秒前
30秒前
xinl518发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030