亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models

Python(编程语言) 计算机科学 深度学习 人工智能 机器学习 计算科学 程序设计语言
作者
Yuzhi Zhang,Haidi Wang,Weijie Chen,Jinzhe Zeng,Linfeng Zhang,Han Wang,E Weinan
出处
期刊:Computer Physics Communications [Elsevier]
卷期号:253: 107206-107206 被引量:361
标识
DOI:10.1016/j.cpc.2020.107206
摘要

In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with quantum accuracy. However, making these models truly reliable and practically useful is still a very non-trivial task. A key component in this task is the generation of datasets used in model training. In this paper, we introduce the Deep Potential GENerator (DP-GEN), an open-source software platform that implements the recently proposed ”on-the-fly” learning procedure (Zhang et al. 2019) and is capable of generating uniformly accurate deep learning based PES models in a way that minimizes human intervention and the computational cost for data generation and model training. DP-GEN automatically and iteratively performs three steps: exploration, labeling, and training. It supports various popular packages for these three steps: LAMMPS for exploration, Quantum Espresso, VASP, CP2K, etc. for labeling, and DeePMD-kit for training. It also allows automatic job submission and result collection on different types of machines, such as high performance clusters and cloud machines, and is adaptive to different job management tools, including Slurm, PBS, and LSF. As a concrete example, we illustrate the details of the process for generating a general-purpose PES model for Cu using DP-GEN. Program Title: DP-GEN Program Files doi: http://dx.doi.org/10.17632/sxybkgc5xc.1 Licensing provisions: LGPL Programming language: Python Nature of problem: Generating reliable deep learning based potential energy models with minimal human intervention and computational cost. Solution method: The concurrent learning scheme is implemented. Supports for sampling configuration space with LAMMPS, generating ab initio data with Quantum Espresso, VASP, CP2K and training potential models with DeePMD-kit are provided. Supports for different machines including workstations, high performance clusters and cloud machines are provided. Supports for job management tools including Slurm, PBS, LSF are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Liang发布了新的文献求助10
9秒前
34秒前
Liang完成签到,获得积分10
35秒前
binyh发布了新的文献求助10
40秒前
jackone完成签到,获得积分10
1分钟前
andrele完成签到,获得积分10
1分钟前
1分钟前
隐形曼青应助科研通管家采纳,获得20
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
欢呼的寻双完成签到,获得积分10
1分钟前
HuiHui发布了新的文献求助10
1分钟前
1分钟前
SciGPT应助HuiHui采纳,获得10
2分钟前
饭团不吃鱼完成签到,获得积分10
2分钟前
在路上完成签到 ,获得积分0
2分钟前
叮咚完成签到,获得积分10
2分钟前
龙腾岁月完成签到 ,获得积分10
2分钟前
宇文傲龙完成签到 ,获得积分10
2分钟前
也是难得取个名完成签到 ,获得积分10
2分钟前
NPC应助大桃采纳,获得30
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
binyh完成签到,获得积分10
3分钟前
清秀的怀蕊完成签到 ,获得积分10
3分钟前
Rinsana完成签到,获得积分10
3分钟前
寻道图强完成签到,获得积分0
3分钟前
jeff完成签到,获得积分10
4分钟前
pathway发布了新的文献求助10
4分钟前
NexusExplorer应助pathway采纳,获得10
4分钟前
叮咚发布了新的文献求助10
4分钟前
卷卷完成签到 ,获得积分10
4分钟前
orixero应助科研通管家采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
jierdalivelo发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299638
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989