QPMASS: A parallel peak alignment and quantification software for the analysis of large-scale gas chromatography-mass spectrometry (GC-MS)-based metabolomics datasets

质谱法 气相色谱-质谱法 软件 代谢组学 化学 比例(比率) 色谱法 分析化学(期刊) 计算机科学 操作系统 物理 量子力学
作者
Lixin Duan,Aimin Ma,Xianbin Meng,Guo-An Shen,Xiaoquan Qi
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1620: 460999-460999 被引量:17
标识
DOI:10.1016/j.chroma.2020.460999
摘要

Gas chromatography-mass spectrometry (GC-MS) is a robust analytical platform for analysis of small molecules. Recently, it is widely used for large-scale metabolomics studies, in which hundreds or even thousands of samples are analyzed simultaneously, producing a very large and complex GC-MS datasets. A number of software are currently available for processing GC-MS data, but it is too compute-intensive for them to efficiently and accurately align chromatographic peaks from thousands of samples. Here, we report a newly developed software, QPMASS, for analysis of large-scale GC-MS data. The parallel computing with an advanced dynamic programming approach is implemented in QPMASS to align peaks from multiple samples based on retention time and mass spectra, enabling fast processing large-scale datasets. Furthermore, the missing value filtering and backfilling are introduced into the program, greatly reducing false positive and false negative errors to be less than 5%. We demonstrated that it took only 8 h to align and quantify a GC-TOF-MS dataset from 300 rice leaves samples, and 17 h to process a GC-qMS dataset from 1000 rice seed samples by using a personal computer (3.70 GHz CPU, 16 GB of memory and > 100 GB hard disk). QPMASS is written in C++ programming language, and is able to run under Windows operation system with a user-friendly interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巫马完成签到,获得积分10
刚刚
刚刚
酷波er应助含糊的紫文采纳,获得10
1秒前
1秒前
ssh完成签到,获得积分10
1秒前
1秒前
ieee拯救者应助yaoyao110采纳,获得10
2秒前
搜集达人应助yannis采纳,获得10
3秒前
研友_VZG7GZ应助小南采纳,获得10
4秒前
小二郎应助胖子一个采纳,获得10
4秒前
紫陌完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
勤劳尔曼发布了新的文献求助10
5秒前
调皮的代双完成签到 ,获得积分10
5秒前
5秒前
5秒前
忐忑的惜天完成签到,获得积分10
6秒前
Badada发布了新的文献求助10
7秒前
典雅的念真完成签到,获得积分10
7秒前
zhenzheng完成签到 ,获得积分0
7秒前
幽默的语蕊完成签到,获得积分20
7秒前
FOOG发布了新的文献求助10
7秒前
科研通AI6应助Li采纳,获得10
9秒前
Huiiiiii完成签到,获得积分20
9秒前
充电宝应助Endeavor采纳,获得10
10秒前
wbb发布了新的文献求助10
10秒前
11秒前
12秒前
Jason2002完成签到 ,获得积分10
12秒前
12秒前
mc应助守夜人采纳,获得10
12秒前
13秒前
13秒前
14秒前
谦让鹏涛发布了新的文献求助10
16秒前
Hello应助派大星采纳,获得10
16秒前
星辰大海应助OVO采纳,获得10
16秒前
胖子一个发布了新的文献求助10
17秒前
yuanshl1985发布了新的文献求助10
17秒前
科研小学生完成签到,获得积分0
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051