Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries

金属锂 法拉第效率 电解质 阳极 阴极 材料科学 锂(药物) 储能 溶剂 金属 溶剂化 化学工程 无机化学 电极 化学 冶金 有机化学 热力学 工程类 物理化学 内分泌学 功率(物理) 物理 医学
作者
Zhiao Yu,Hansen Wang,Xian Kong,William Huang,Yuchi Tsao,David G. Mackanic,Kecheng Wang,Xinchang Wang,Wenxiao Huang,Snehashis Choudhury,Yu Zheng,Chibueze V. Amanchukwu,Samantha T. Hung,Yuting Ma,Eder G. Lomeli,Jian Qin,Yi Cui,Zhenan Bao
出处
期刊:Nature Energy [Springer Nature]
卷期号:5 (7): 526-533 被引量:1097
标识
DOI:10.1038/s41560-020-0634-5
摘要

Electrolyte engineering is critical for developing Li metal batteries. While recent works improved Li metal cyclability, a methodology for rational electrolyte design remains lacking. Herein, we propose a design strategy for electrolytes that enable anode-free Li metal batteries with single-solvent single-salt formations at standard concentrations. Rational incorporation of –CF2– units yields fluorinated 1,4-dimethoxylbutane as the electrolyte solvent. Paired with 1 M lithium bis(fluorosulfonyl)imide, this electrolyte possesses unique Li–F binding and high anion/solvent ratio in the solvation sheath, leading to excellent compatibility with both Li metal anodes (Coulombic efficiency ~ 99.52% and fast activation within five cycles) and high-voltage cathodes (~6 V stability). Fifty-μm-thick Li|NMC batteries retain 90% capacity after 420 cycles with an average Coulombic efficiency of 99.98%. Industrial anode-free pouch cells achieve ~325 Wh kg−1 single-cell energy density and 80% capacity retention after 100 cycles. Our design concept for electrolytes provides a promising path to high-energy, long-cycling Li metal batteries. The realization of the full potential of Li metal batteries requires high-performance electrolytes. Here Z. Bao and colleagues develop low-concentration electrolytes with a single-solvent and single-salt formulation, offering promise for high-energy and long-cycling batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
合适尔蝶发布了新的文献求助10
刚刚
1秒前
1秒前
秋之月完成签到,获得积分20
2秒前
仰望星空扭到腰完成签到,获得积分10
2秒前
充电宝应助赵yy采纳,获得10
3秒前
federish完成签到 ,获得积分10
3秒前
3秒前
整齐豆芽发布了新的文献求助10
5秒前
西瓜太郎完成签到,获得积分20
5秒前
5秒前
雪白山蝶完成签到,获得积分10
6秒前
星辰大海应助舒适新梅采纳,获得10
6秒前
369发布了新的文献求助10
7秒前
Erich完成签到 ,获得积分10
7秒前
悦耳黑夜完成签到,获得积分10
7秒前
火星上的半梅完成签到,获得积分10
8秒前
科研通AI6应助翠瓜搞科研采纳,获得10
8秒前
8秒前
雪白山蝶发布了新的文献求助10
8秒前
陈军完成签到,获得积分0
9秒前
JY完成签到,获得积分10
9秒前
9秒前
jinling完成签到 ,获得积分10
10秒前
1223发布了新的文献求助10
11秒前
端庄毛巾发布了新的文献求助10
11秒前
11秒前
zhu发布了新的文献求助10
11秒前
11秒前
11秒前
珏珏子发布了新的文献求助30
12秒前
嘻嘻嘻完成签到,获得积分10
12秒前
ChuangyangLi发布了新的文献求助10
12秒前
mol完成签到 ,获得积分10
12秒前
Tian发布了新的文献求助10
13秒前
嘟嘟请让一让完成签到,获得积分10
14秒前
15秒前
wenlongliu完成签到,获得积分10
15秒前
aaashirz_发布了新的文献求助10
15秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388179
求助须知:如何正确求助?哪些是违规求助? 4510159
关于积分的说明 14034562
捐赠科研通 4421062
什么是DOI,文献DOI怎么找? 2428561
邀请新用户注册赠送积分活动 1421212
关于科研通互助平台的介绍 1400459