黄曲霉毒素
适体
化学
色谱法
计算生物学
环境化学
食品科学
分子生物学
生物
作者
Long Wu,Min Zhou,Sheng Wang,Jing‐Min Liu
标识
DOI:10.1016/j.jhazmat.2020.123154
摘要
Traditional enzyme-linked immunosorbent assay (ELISA) suffers from the limitations of relatively low sensitivity and stability, and enzyme-labelled antibodies are hard to be prepared and purified. Based on a nanozyme, an aptamer and Fe3O4 magnetic nanoparticles (MNP), a nanozyme and aptamer-based immunosorbent assay (NAISA) was developed for aflatoxin B1 (AFB1) detection with simpler operation and separation. In this work, mesoporous SiO2/Au-Pt (m-SAP) were prepared to act as signal labels, which showed high catalase-like activity and was denoted as nanozyme. Aptamer was adopted to specifically recognize with AFB1, and MNP facilitated to realize magnetic separation. To verify the performance of NAISA, traditional ELISA (t-ELISA) and enhanced ELISA (e-ELISA) using MNP and m-SAP nanozyme were applied in AFB1 detection. The NAISA method showed the lowest limit of detection (LOD) with 5 pg mL-1 (n = 3, ±4.2 %), 600 and 12-fold lower than that of t-ELISA (3 ng mL-1) and e-ELISA (0.06 ng mL-1), respectively. In the interference tests, AFB1 can be identified among six different interfering substances. The NAISA method, thus, can be of great importance as it allows selective and sensitive AFB1 detection, while providing the simplicity of use and need for screening hazardous materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI