A Survey on Modern Deep Neural Network for Traffic Prediction: Trends, Methods and Challenges

深度学习 计算机科学 数据科学 人气 领域(数学) 人工智能 人工神经网络 自回归积分移动平均 灵活性(工程) 机器学习 时间序列 心理学 数学 社会心理学 统计 纯数学
作者
David Alexander Tedjopurnomo,Zhifeng Bao,Baihua Zheng,Farhana M. Choudhury,A. K. Qin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:245
标识
DOI:10.1109/tkde.2020.3001195
摘要

In this modern era, traffic congestion has become a major source of severe negative economic and environmental impact for urban areas worldwide. One of the most efficient ways to mitigate traffic congestion is through future traffic prediction. The research field of traffic prediction has evolved greatly ever since its inception in the late 70s. Earlier studies mainly use classical statistical models such as ARIMA and its variants. Recently, researchers have started to focus on machine learning models because of their power and flexibility. As theoretical and technological advances emerge, we enter the era of deep neural network, which gained popularity due to its sheer prediction power which can be attributed to the complex and deep structure. Despite the popularity of deep neural network models in the field of traffic prediction, literature surveys of such methods are rare. In this work, we present an up-to-date survey of deep neural network for traffic prediction. We will provide a detailed explanation of popular deep neural network architectures commonly used in the traffic flow prediction literatures, categorize and describe the literatures themselves, present an overview of the commonalities and differences among different works, and finally provide a discussion regarding the challenges and future directions for this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佟禹萱关注了科研通微信公众号
刚刚
刚刚
JJ完成签到,获得积分10
刚刚
万能图书馆应助ttt采纳,获得50
1秒前
默己完成签到 ,获得积分10
1秒前
马雪萍关注了科研通微信公众号
1秒前
wowser发布了新的文献求助10
2秒前
科研通AI6应助光亮怜阳采纳,获得10
2秒前
叹千泠发布了新的文献求助10
2秒前
iiomee完成签到 ,获得积分10
2秒前
3秒前
充电宝应助酷炫念柏采纳,获得20
3秒前
3秒前
小单王完成签到,获得积分10
3秒前
科研通AI5应助小丸子采纳,获得10
3秒前
sunli发布了新的文献求助200
3秒前
4秒前
4秒前
刘小雨发布了新的文献求助30
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI6应助长情的书雁采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
lilili应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得30
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
大模型应助橘子采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
思源应助风到这里就是年采纳,获得10
6秒前
meng完成签到,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
7秒前
默己关注了科研通微信公众号
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016698
求助须知:如何正确求助?哪些是违规求助? 4256677
关于积分的说明 13265866
捐赠科研通 4060670
什么是DOI,文献DOI怎么找? 2220985
邀请新用户注册赠送积分活动 1230264
关于科研通互助平台的介绍 1152852