DeepDTI: High-fidelity six-direction diffusion tensor imaging using deep learning

磁共振弥散成像 人工智能 纤维束成像 计算机科学 图像质量 卷积神经网络 张量(固有定义) 体素 模式识别(心理学) 计算机视觉 数学 图像(数学) 磁共振成像 几何学 医学 放射科
作者
Qiyuan Tian,Berkin Bilgic̦,Qiuyun Fan,Congyu Liao,Chanon Ngamsombat,Yuxin Hu,Thomas Witzel,Kawin Setsompop,Jon̈athan R. Polimeni,Susie Y. Huang
出处
期刊:NeuroImage [Elsevier]
卷期号:219: 117017-117017 被引量:75
标识
DOI:10.1016/j.neuroimage.2020.117017
摘要

Diffusion tensor magnetic resonance imaging (DTI) is unsurpassed in its ability to map tissue microstructure and structural connectivity in the living human brain. Nonetheless, the angular sampling requirement for DTI leads to long scan times and poses a critical barrier to performing high-quality DTI in routine clinical practice and large-scale research studies. In this work we present a new processing framework for DTI entitled DeepDTI that minimizes the data requirement of DTI to six diffusion-weighted images (DWIs) required by conventional voxel-wise fitting methods for deriving the six unique unknowns in a diffusion tensor using data-driven supervised deep learning. DeepDTI maps the input non-diffusion-weighted (b ​= ​0) image and six DWI volumes sampled along optimized diffusion-encoding directions, along with T1-weighted and T2-weighted image volumes, to the residuals between the input and high-quality output b = 0 image and DWI volumes using a 10-layer three-dimensional convolutional neural network (CNN). The inputs and outputs of DeepDTI are uniquely formulated, which not only enables residual learning to boost CNN performance but also enables tensor fitting of resultant high-quality DWIs to generate orientational DTI metrics for tractography. The very deep CNN used by DeepDTI leverages the redundancy in local and non-local spatial information and across diffusion-encoding directions and image contrasts in the data. The performance of DeepDTI was systematically quantified in terms of the quality of the output images, DTI metrics, DTI-based tractography and tract-specific analysis results. We demonstrate rotationally-invariant and robust estimation of DTI metrics from DeepDTI that are comparable to those obtained with two b ​= ​0 images and 21 DWIs for the primary eigenvector derived from DTI and two b ​= ​0 images and 26–30 DWIs for various scalar metrics derived from DTI, achieving 3.3–4.6 × ​acceleration, and twice as good as those of a state-of-the-art denoising algorithm at the group level. The twenty major white-matter tracts can be accurately identified from the tractography of DeepDTI results. The mean distance between the core of the major white-matter tracts identified from DeepDTI results and those from the ground-truth results using 18 ​b ​= ​0 images and 90 DWIs measures around 1–1.5 ​mm. DeepDTI leverages domain knowledge of diffusion MRI physics and power of deep learning to render DTI, DTI-based tractography, major white-matter tracts identification and tract-specific analysis more feasible for a wider range of neuroscientific and clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
manman完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
NexusExplorer应助唯雷采纳,获得10
1秒前
chens627发布了新的文献求助10
2秒前
汉堡包应助之明Mt采纳,获得10
3秒前
3秒前
hui完成签到,获得积分10
3秒前
4秒前
调研昵称发布了新的文献求助10
4秒前
Pavel完成签到,获得积分10
5秒前
5秒前
5秒前
ziluolan007发布了新的文献求助10
7秒前
7秒前
领导范儿应助K423采纳,获得10
7秒前
yyc发布了新的文献求助10
7秒前
8秒前
9秒前
咕咕发布了新的文献求助10
9秒前
9秒前
十年完成签到 ,获得积分10
10秒前
唯雷完成签到,获得积分10
10秒前
LW完成签到,获得积分10
10秒前
科研通AI2S应助清脆的冷松采纳,获得10
10秒前
10秒前
Wei发布了新的文献求助10
11秒前
小新发布了新的文献求助10
11秒前
11秒前
zxlllll发布了新的文献求助10
13秒前
唯雷发布了新的文献求助10
14秒前
Jasper应助hhh采纳,获得10
14秒前
花城发布了新的文献求助10
14秒前
洂浔完成签到 ,获得积分10
14秒前
14秒前
缘君发布了新的文献求助10
14秒前
咕咕完成签到,获得积分10
15秒前
科研巨星完成签到,获得积分20
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258962
求助须知:如何正确求助?哪些是违规求助? 2900627
关于积分的说明 8311796
捐赠科研通 2569955
什么是DOI,文献DOI怎么找? 1396075
科研通“疑难数据库(出版商)”最低求助积分说明 653416
邀请新用户注册赠送积分活动 631356