亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepDTI: High-fidelity six-direction diffusion tensor imaging using deep learning

磁共振弥散成像 人工智能 纤维束成像 计算机科学 图像质量 卷积神经网络 张量(固有定义) 体素 模式识别(心理学) 计算机视觉 数学 图像(数学) 磁共振成像 几何学 医学 放射科
作者
Qiyuan Tian,Berkin Bilgic̦,Qiuyun Fan,Congyu Liao,Chanon Ngamsombat,Yuxin Hu,Thomas Witzel,Kawin Setsompop,Jon̈athan R. Polimeni,Susie Y. Huang
出处
期刊:NeuroImage [Elsevier BV]
卷期号:219: 117017-117017 被引量:75
标识
DOI:10.1016/j.neuroimage.2020.117017
摘要

Diffusion tensor magnetic resonance imaging (DTI) is unsurpassed in its ability to map tissue microstructure and structural connectivity in the living human brain. Nonetheless, the angular sampling requirement for DTI leads to long scan times and poses a critical barrier to performing high-quality DTI in routine clinical practice and large-scale research studies. In this work we present a new processing framework for DTI entitled DeepDTI that minimizes the data requirement of DTI to six diffusion-weighted images (DWIs) required by conventional voxel-wise fitting methods for deriving the six unique unknowns in a diffusion tensor using data-driven supervised deep learning. DeepDTI maps the input non-diffusion-weighted (b ​= ​0) image and six DWI volumes sampled along optimized diffusion-encoding directions, along with T1-weighted and T2-weighted image volumes, to the residuals between the input and high-quality output b = 0 image and DWI volumes using a 10-layer three-dimensional convolutional neural network (CNN). The inputs and outputs of DeepDTI are uniquely formulated, which not only enables residual learning to boost CNN performance but also enables tensor fitting of resultant high-quality DWIs to generate orientational DTI metrics for tractography. The very deep CNN used by DeepDTI leverages the redundancy in local and non-local spatial information and across diffusion-encoding directions and image contrasts in the data. The performance of DeepDTI was systematically quantified in terms of the quality of the output images, DTI metrics, DTI-based tractography and tract-specific analysis results. We demonstrate rotationally-invariant and robust estimation of DTI metrics from DeepDTI that are comparable to those obtained with two b ​= ​0 images and 21 DWIs for the primary eigenvector derived from DTI and two b ​= ​0 images and 26–30 DWIs for various scalar metrics derived from DTI, achieving 3.3–4.6 × ​acceleration, and twice as good as those of a state-of-the-art denoising algorithm at the group level. The twenty major white-matter tracts can be accurately identified from the tractography of DeepDTI results. The mean distance between the core of the major white-matter tracts identified from DeepDTI results and those from the ground-truth results using 18 ​b ​= ​0 images and 90 DWIs measures around 1–1.5 ​mm. DeepDTI leverages domain knowledge of diffusion MRI physics and power of deep learning to render DTI, DTI-based tractography, major white-matter tracts identification and tract-specific analysis more feasible for a wider range of neuroscientific and clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
33秒前
35秒前
酷波er应助归陌采纳,获得10
38秒前
38秒前
40秒前
小梦发布了新的文献求助10
40秒前
zhengxiaoyu发布了新的文献求助10
43秒前
slz发布了新的文献求助10
44秒前
小蘑菇应助小梦采纳,获得10
47秒前
归陌完成签到,获得积分10
48秒前
49秒前
50秒前
GingerF应助科研通管家采纳,获得80
50秒前
归陌发布了新的文献求助10
53秒前
神外王001完成签到 ,获得积分10
55秒前
科目三应助ywl采纳,获得10
57秒前
58秒前
1分钟前
1分钟前
ywl发布了新的文献求助10
1分钟前
LIUDEHUA发布了新的文献求助10
1分钟前
少7一点8完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
chichqq发布了新的文献求助10
1分钟前
1分钟前
赵世璧发布了新的文献求助10
1分钟前
地瓜地瓜完成签到 ,获得积分10
2分钟前
Ava应助chichqq采纳,获得30
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
汉堡包应助高挑的沛蓝采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
HuiHui完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503031
关于积分的说明 11111168
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870728
科研通“疑难数据库(出版商)”最低求助积分说明 802250